欢迎访问《电化学(中英文)》期刊官方网站,今天是
论文

胺类添加剂对NCM811‖SiC电池热失控抑制效果研究

  • 侯博文 ,
  • 何龙 ,
  • 冯旭宁 ,
  • 张伟峰 ,
  • 王莉 ,
  • 何向明
展开
  • a清华大学汽车安全与节能国家重点实验室,北京 100084
    b上海理工大学机械工程学院汽车工程系,上海 200093
    c清华大学核能与新能源技术研究院,北京,100084

收稿日期: 2022-11-04

  修回日期: 2022-12-04

  录用日期: 2023-01-06

  网络出版日期: 2023-01-06

Effect of Amine Additives on Thermal Runaway Inhibition of SiC||NCM811 Batteries

  • Bo-Wen Hou ,
  • Long He ,
  • Xu-Ning Feng ,
  • Wei-Feng Zhang ,
  • Li Wang ,
  • Xiang-Ming He
Expand
  • aState Key Laboratory of Automotive Safety and Energy, Tsinghua University, Beijing 100084, China
    bDepartment of Automotive Engineering, School of Mechanical Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
    cInstitute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China
*Tel: (86-10)62796167; E-mail: fxn17@mail.tsinghua.edu.cn
*Tel: (86-10)62796167; E-mail: fxn17@mail.tsinghua.edu.cn
*Tel: (86-10)62796167; E-mail: fxn17@mail.tsinghua.edu.cn

Received date: 2022-11-04

  Revised date: 2022-12-04

  Accepted date: 2023-01-06

  Online published: 2023-01-06

摘要

高镍三元电池的高能量密度是取代化石能源,推动清洁能源发展的核心优势,同时也是导致电池严重安全隐患的根本原因。初级胺类与次级胺类能与常见的含碳酸乙烯酯电解液发生开环聚合,从而形成正负极间隔离层,提高电池热安全性。本文基于胺类和电池组分间的化学反应,在电池材料层面和单体层面对电池的安全性展开了研究。在材料层面,利用差示扫描量热法测试锂离子电池中有无胺类添加剂对不同组分间的热稳定性影响。在单体层面,使用绝热加速量热仪对有无添加剂全电池的安全性进行测试,提取热失控特征温度。加入胺类添加剂后电池组分间部分化学反应被提前,同时总放热量明显减少,最大温升速率下降,电池热失控得到有效抑制。

本文引用格式

侯博文 , 何龙 , 冯旭宁 , 张伟峰 , 王莉 , 何向明 . 胺类添加剂对NCM811‖SiC电池热失控抑制效果研究[J]. 电化学, 2023 , 29(8) : 2211141 . DOI: 10.13208/j.electrochem.2211141

Abstract

The high energy density of NCM batteries with high nickel content is a key advantage in replacing fossil fuels and promoting clean energy development, at the same time, is also a fundamental cause of serious safety hazards in batteries. Primary and secondary amines can lead to ring-opening polymerization of common ethylene carbonate electrolytes, resulting in an isolation layer between the cathode and the anode, and improving the thermal safety of the battery. In this work, the safety of batteries is considered both at the material level and at the cell level, based on the chemical reactions between amines and the battery components. At the material level, the effect of the presence or absence of amine additives on the thermal stability of the different components of the lithium-ion battery was tested by differential scanning calorimetry. At the cell level, the safety of the whole battery with and without additives was tested by using accelerating rate calorimeter to extract thermal runaway (TR) characteristic temperatures. The addition of the amine resulted in an earlier onset of some of the chemical reactions between the battery components, as well as a significant reduction in total heat release and a decrease in the maximum temperature rise rate, such that TR, was effectively suppressed.

参考文献

[1] Ai X P, Yang H X. Electric vehicles and power batteries[J]. J. Electrochem., 2011, 17(2): 123-133.
[2] Li H, Yu S J, Chen Z K, Liang G C. Failure reaction mechanism of internal short-circuit for lithium-ion batteries[J]. J. Electrochem., 2010, 16(2): 185-191.
[3] Feng X N, Ren D S, He X M, Ouyang M G. Mitigating thermal runaway of lithium-ion batteries[J]. Joule, 2020, 4(4): 743-770.
[4] Hu G X, Xie J Y. Some consideration for lithium-ion cell’s safety[J]. J. Electrochem., 2002, (3): 245-251.
[5] Ai X P, Cao Y L, Yang H X. Self-activating safety mechanisms for Li-ion batteries[J]. J. Electrochem., 2010, 16(1): 6-10.
[6] Chen Y H, Tang Z Y, He Y B, Liu Q. Research of explosion mechanism of lithium-ion battery[J]. J. Electrochem., 2006, (03): 266-270.
[7] Zeng L X, Liu R P, Han L, Luo F Q, Chen X, Wang J B, Qian Q R, Chen Q H, Wei M D. Preparation of a Si/SiO2-ordered-mesoporous-carbon nanocomposite as an anode for high-performance lithium-ion and sodium-ion batteries[J]. Chem. Eur. J., 2018, 24(19): 4841-4848.
[8] Xiao T T, Zhang W F, Xu T, Wu J X, Wei M D. Hollow SiO2 microspheres coated with nitrogen doped carbon layer as an anode for high performance lithium-ion batteries[J]. Electrochim. Acta, 2019, 306: 106-112.
[9] Wang Y, Ren D S, Feng X N, Wang L, Ouyang M G. Thermal runaway modeling of large format high-nickel/silicon-graphite lithium-ion batteries based on reaction sequence and kinetics[J]. Appl. Energy, 2022, 306: 117943.
[10] Shi Y, Noelle D J, Wang M, Le A V, Yoon H, Zhang M H, Meng Y S, Qiao Y. Exothermic behaviors of mechanically abused lithium-ion batteries with dibenzylamine[J]. J. Power Sources, 2016, 326: 514-521.
[11] Shi Y, Noelle D J, Wang M, Le A V, Yoon H, Zhang M H, Meng Y S, Qiao Y. Roles of amines in thermal-runaway-mitigating lithium-ion battery[J]. ACS Appl. Mater. Interfaces, 2016, 8(45): 30956-30963.
[12] Wang L, Feng X N, Xue G, Li M G, Hu J Y, Tian G Y, He X M. ARC experimental and data analysis for safety evaluation of Li-ion batteries[J]. Energy Storage Science and Technology, 2018, 7(6): 1261-1270.
[13] Feng X N, Fang M, He X M, Ouyang M G, Lu L G, Wang H, Zhang M X. Thermal runaway features of large format prismatic lithium ion battery using extended volume accelerating rate calorimetry[J]. J. Power Sources, 2014, 255: 294-301.
[14] Xu C S, Feng X N, Huang W S, Duan Y K, Chen T Y, Gao S, Lu L G, Jiang F C, Ouyang M G. Internal temperature detection of thermal runaway in lithium-ion cells tested by extended-volume accelerating rate calorimetry[J]. J. Energy Storage, 2020, 31: 101670.
[15] Chou L Y, Ye Y S, Lee H K, Huang W X, Xu R, Gao X, Chen R J, Wu F, Tsung C K, Cui Y. Electrolyte-resistant dual materials for the synergistic safety enhancement of lithium-ion batteries[J]. Nano Lett., 2021, 21(5): 2074-2080.
文章导航

/