欢迎访问《电化学(中英文)》期刊官方网站,今天是
论文

用纳米羟基磷灰石@多孔碳构建锂硫电池高效反应界面

  • 汪佳裕 ,
  • 仝学锋 ,
  • 彭启繁 ,
  • 关越鹏 ,
  • 王维坤 ,
  • 王安邦 ,
  • 刘乃强 ,
  • 黄雅钦
展开
  • 1.材料电化学过程与技术北京市重点实验室, 天然高分子生物医用材料教育部重点实验室,北京化工大学, 北京 100029
    2.北京服装学院服装材料研究开发与评价北京市重点实验室,北京市纺织纳米纤维工程技术研究中心, 北京 100029
    3.防化研究院, 北京 100191
    4.四川轻化工大学材料科学与工程学院, 四川 自贡, 643000

收稿日期: 2022-09-21

  修回日期: 2022-11-04

  网络出版日期: 2022-11-28

Efficient Interface Enabled by Nano-Hydroxyapatite@Porous Carbon for Lithium-Sulfur Batteries

  • Jia-Yu Wang ,
  • Xue-Feng Tong ,
  • Qi-Fan Peng ,
  • Yue-Peng Guan ,
  • Wei-Kun Wang ,
  • An-Bang Wang ,
  • Nai-Qiang Liu ,
  • Ya-Qin Huang
Expand
  • 1. Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Key Laboratory of Biomedical Materials of Natural Macromolecules, Ministry of Education, Beijing University of Chemical Technology, Beijing 100029, P.R. China
    2. Beijing Key Laboratory of Clothing Materials R&D and Assessment, Beijing Engineering Research Center of Textile Nano Fiber, Beijing Institute of Fashion Technology, Beijing 100029, People’s Republic of China
    3. Research Institute of Chemical Defense, Beijing 100191, P.R. China
    4. School of Materials Science and Engineering, Sichuan University of Science & Engineering, Zigong 643000, P.R. China
* Ya-Qin Huang: Tel: (86-10)64438266, huangyq@mail.buct.edu.cn,
Yue-Peng Guan, 20210007@bift.edu.cn,
Nai-Qiang Liu, liunaiqiang@suse.edu.cn.

Received date: 2022-09-21

  Revised date: 2022-11-04

  Online published: 2022-11-28

摘要

由于正极活性物质硫具有能量密度高、成本低廉和储量丰富等优点,锂硫(Li-S)电池受到了人们的极大关注。然而,锂硫电池充放电过程中产生的多硫化锂的“穿梭效应”严重阻碍了其实用化进程。为了解决这个问题,本研究借助动物软骨的组成和结构特点,制备了纳米羟基磷灰石@多孔碳(nano-HA@CCPC)复合材料,并以此设计了面向正极的锂硫电池隔膜涂层。研究表明,纳米羟基磷灰石不仅对多硫化物具有吸附固定作用,并且对多硫化锂的转化具有催化作用,加快了多硫化锂的氧化还原动力学,有效地提升了活性物质硫的利用率。另外,软骨基碳复合材料的多孔结构形成了很好的导电网络,为电化学反应提供了优良的电子传导路径;也有利于电解液的浸润,加快了离子传输;碳的氮原子掺杂进一步限制了多硫化物的穿梭效应。因此,采用nano-HA@CCPC隔膜涂层的锂硫电池表现出较长的循环寿命、低的容量损失以及高的倍率性能。在0.5 C下,循环325次后,电池仍然能保持815 mAh·g-1的放电比容量,并且每次的容量衰减率仅为0.051%。nano-HA@CCPC的设计制备将为锂硫电池的发展提供新材料。

本文引用格式

汪佳裕 , 仝学锋 , 彭启繁 , 关越鹏 , 王维坤 , 王安邦 , 刘乃强 , 黄雅钦 . 用纳米羟基磷灰石@多孔碳构建锂硫电池高效反应界面[J]. 电化学, 2022 , 28(11) : 2219008 . DOI: 10.13208/j.electrochem.2219008

Abstract

The dissolution and “shuttle effect” of lithium polysulfides (LiPSs) hinder the application of lithium-sulfur (Li-S) batteries. To solve those problems, inspired by natural materials, a nano-hydroxyapatite@porous carbon derived from chicken cartilage (nano-HA@CCPC) was fabricated by employing a simple pre-carbonization and carbonization method, and applied in Li-S batteries. The nano-HA@CCPC would provide a reactive interface that allows efficient LiPSs reduction. With a strong affinity for LiPSs and an excellent electronic conductive path for converting LiPSs, the shuttle effect of LiPSs was confined and the redox kinetics of LiPSs was substantially enhanced. Li-S batteries employing nano-HA@CCPC-modified separators exhibited long cycle life and improved rate capability. At 0.5 C after 325 cycles, a specific capacity of 815 mAh·g-1 and a low capacity fading rate of 0.051% were obtained. The superior properties, sustainable raw materials, and facile preparation process make nano-HA@CCPC a promising additive material for practical Li-S batteries.

参考文献

[1] Goodenough J B, Park K S. The Li-ion rechargeable battery: a perspective[J]. J. Am. Chem. Soc., 2013, 135(4): 1167-1176.
[2] Manthiram A, Fu Y, Chung S H, Zu C, Su Y S. Rechargeable lithium-sulfur batteries[J]. Chem. Rev., 2014, 114(23): 11751-11787.
[3] Sun Y M, Liu N A, Cui Y. Promises and challenges of nanomaterials for lithium-based rechargeable batteries[J]. Nat. Energy, 2016, 1(7): 16071.
[4] Marom R, Amalraj S F, Leifer N, Jacob D, Aurbach D. A review of advanced and practical lithium battery materials[J]. J. Mater. Chem., 2011, 21(27): 9938-9954.
[5] Girishkumar G, Mccloskey B, Luntz A C, Swanson S, Wilcke W. Lithium-air battery: promise and challenges[J]. J. Phys. Chem. Lett., 2010, 1(14): 2193-2203.
[6] Rosenman A, Markevich E, Salitra G, Aurbach D, Garsuch A, Chesneau F F. Review on Li-sulfur battery systems: an integral perspective[J]. Adv. Energy Mater., 2015, 5(16): 1500212.
[7] Peng H J, Huang J Q, Cheng X B, Zhang Q. Review on high-loading and high-energy lithium-sulfur batteries[J]. Adv. Energy Mater., 2017, 7(24): 1700260.
[8] Choi J W, Kim J K, Cheruvally G, Ahn J H, Ahn H J, Kim K W. Rechargeable lithium/sulfur battery with suitable mixed liquid electrolytes[J]. Electrochim. Acta, 2007, 52(5): 2075-2082.
[9] Yang Y, Zheng G Y, Cui Y. Nanostructured sulfur cathodes[J]. Chem. Soc. Rev., 2013, 44(24): 3018-3032.
[10] Zhang S S. Liquid electrolyte lithium/sulfur battery: fundamental chemistry, problems, and solutions[J]. J. Power Sources, 2013, 231(2): 153-162.
[11] Liu M, Li Q, Qin X Y, Liang G M, Han W J, Zhou D, He Y B, Li B H, Kang F Y. Suppressing self-discharge and shuttle effect of lithium-sulfur batteries with V2O5-decorated carbon nanofiber interlayer[J]. Small, 2017, 13(12): 1602539.
[12] Chung S H, Manthiram A. A polyethylene glycol-supported microporous carbon coating as a polysulfide trap for utilizing pure sulfur cathodes in lithium-sulfur batteries[J]. Adv. Mater., 2014, 26(43): 7352-7357.
[13] Huang J Q, Zhang Q, Peng H J, Liu X Y, Qian W Z, Wei F. Ionic shield for polysulfides towards highly-stable lithium-sulfur batteries[J]. Energy Environ. Sci., 2013, 7(1): 347-353.
[14] Liu D, Zhang C, Zhou G, Lv W, Ling G, Zhi L, Yang Q H. Catalytic effects in lithium-sulfur batteries: promoted sulfur transformation and reduced shuttle effect[J]. Adv. Sci., 2018, 5(1): 1700270.
[15] Wu H W, Ying H, Zhang W C, Sun X, Yang Y W, Wang L, Zong M. Lock of sulfur with carbon black and a three-dimensional graphene@carbon nanotubes coated separator for lithium-sulfur batteries[J]. J. Alloys Compd., 2017, 708: 743-750.
[16] Xiao D J, Lu C X, Chen C M, Yuan S X. CeO2-webbed carbon nanotubes as a highly efficient sulfur host for lithium-sulfur batteries[J]. Energy Storage Mater., 2018, 10: 216-222.
[17] Peng H J, Huang J Q, Zhao M Q, Zhang Q, Cheng X B, Liu X Y, Qian W Z, Wei F. Carbon: Nanoarchitectured graphene/CNT@porous carbon with extraordinary electrical conductivity and interconnected micro/mesopores for lithium-sulfur batteries[J]. Adv. Funct. Mater., 2014, 24(19): 2772-2781.
[18] Rui W, Chen S G, Deng J H, Xun H, Song Y J, Gan R Y, Wan X J, Wei Z D. Hierarchically porous nitrogen-doped carbon as cathode for lithium-sulfur batteries[J]. J. Energy Chem., 2018, 27: 1661-1667.
[19] Shao H Y, Wang W K, Zhang H, Wang A B, Chen X N, Huang Y Q. Nano-TiO2 decorated carbon coating on the separator to physically and chemically suppress the shuttle effect for lithium-sulfur battery[J]. J. Power Sources, 2018, 378: 537-545.
[20] Zhao X Y, Wang J Y, Sun X G, Wei K R, Wang W K, Wang A B, Huang Y Q, Guan Y P. Hierarchical porous carbon with Nano-MgO as efficient sulfur species micro-reactors for lithium-sulfur battery[J]. J. Electrochem. Soc., 2021, 168(4): 040506.
[21] Guan Y P, Liu X J, Akhtar N, Wang A B, Wang W K, Zhang H, Suntivich J, Huang Y Q. Cr2O3 nanoparticle decorated carbon nanofibers derived from solid leather wastes for high performance lithium-sulfur battery separator coating[J]. J. Electrochem. Soc., 2019, 166(8): A1671.
[22] Kong W B, Yan L J, Luo Y F, Wang D T, Jiang K L, Li Q Q, Fan S S, Wang J P. Li-S batteries: Ultrathin MnO2/graphene oxide/carbon nanotube interlayer as efficient polysulfide-trapping shield for high-performance Li&N dash; S batteries[J]. Adv. Funct. Mater., 2017, 27(18): 1606663.
[23] Sun Z H, Zhang J Q, Yin L C, Hu G J, Fang R P, Cheng H M, Li F. Conductive porous vanadium nitride/graphene composite as chemical anchor of polysulfides for lithium-sulfur batteries[J]. Nat. Commun., 2017, 8: 14627.
[24] Zeng P, Huang L W, Zhang X L, Han Y M, Chen Y G. Inhibiting polysulfides diffusion of lithium-sulfur batteries using an acetylene black-CoS2 modified separator: mechanism research and performance improvement[J]. Appl. Surf. Sci., 2018, 427: 242-252.
[25] Xiang K X, Wen X Y, Hu J, Wang S C, Chen H. Rational fabrication of nitrogen and sulfur codoped carbon nanotubes/MoS2 for high-performance lithium-sulfur batteries[J]. ChemSusChem, 2019, 12(15): 3602-3614.
[26] Zhou T H, Lv W, Li J, Zhou G M, Zhao Y, Fan S X, Liu B L, Li B H, Kang F Y, Yang Q H. Twinborn TiO2-tin heterostructures enabling smooth trapping-diffusion-conversion of polysulfides towards ultralong life lithium-sulfur batteries[J]. Energy Environ. Sci., 2017, 10(7): 1694-1703.
[27] Yuan H, Peng H J, Li B Q, Xie J, Kong L, Zhao M, Chen X, Huang J Q, Zhang Q. Conductive and catalytic triple-phase interfaces enabling uniform nucleation in high-rate lithium-sulfur batteries[J]. Adv. Energy Mater., 2019, 9(1): 1802768.
[28] Peng Y Y, Wen Z P, Liu C Y, Zeng J, Wang Y H, Zhao J B. Refining interfaces between electrolyte and both electrodes with carbon nanotube paper for high-loading lithium-sulfur batteries[J]. ACS Appl. Mater. Interfaces, 2019, 11(7): 6986-6994.
[29] Liu N Q, Fei A, Wang W K, Shao H Y, Zhang H, Wang A B, Xu Z C, Huang Y Q. Nano-hydroxyapatite as an efficient polysulfide absorbent for high-performance Li-S batteries[J]. Electrochim. Acta, 2016, 215: 162-170.
[30] Garnero P. The role of collagen organization on the properties of bone[J]. Calcif. Tissue Int., 2015, 97(3): 229-240.
[31] Peng Q F, Yu F, Wang W K, Wang A B, Wang F, Huang Y Q. Ultralight polyethylenimine/porous carbon modified separator as an effective polysulfide-blocking barrier for lithium-sulfur battery[J]. Electrochim. Acta, 2019, 299: 749-755.
[32] Peng Q F, Fan Y, Huang B C, Huang Y Q. Carbon-containing bone hydroxyapatite obtained from tuna fish bone with high adsorption performance for congo red[J]. RSC Adv., 2017, 7(43): 26968-26973.
[33] Do V, Deepika, Kim M S, Kim M S, Lee K R, Cho W I. Carbon nitride phosphorus as an effective lithium polysulfide adsorbent for lithium-sulfur batteries[J]. ACS Appl. Mater. Interfaces, 2019, 11(12): 11431-11441.
[34] Shao H Y, Ai F, Wang W K, Zhang H, Wang A B, Wang F, Huang Y Q. Crab shell-derived nitrogen-doped micro-/mesoporous carbon as an effective separator coating for high energy lithium-sulfur batteries[J]. J. Mater. Chem. A, 2017, 5(37): 19892-19900.
[35] Zhang B, Qin X, Li G R, Gao X P. Enhancement of long stability of sulfur cathode by encapsulating sulfur into micropores of carbon spheres[J]. Energy Environ. Sci., 2010, 3(10): 1531-1537.
[36] Yamada H, Nakamura H, Nakahara F, Moriguchi I, Kudo T. Electrochemical study of high electrochemical double layer capacitance of ordered porous carbons with both meso/macropores and micropores[J]. J. Phys. Chem. C, 2007, 111(1): 227-233.
[37] Peng H J, Zhang Z W, Huang J Q, Zhang G, Xie J, Xu W T, Shi J L, Chen X, Cheng X B, Zhang Q. A cooperative interface for highly efficient lithium-sulfur batteries[J]. Adv. Mater., 2016, 28(43): 9551-9558.
[38] Zou Q L, Lu Y C. Solvent-dictated lithium sulfur redox reactions: an operando UV-vis spectroscopic study[J]. J. Phys. Chem. Lett., 2016, 7(8): 1518-1525.
[39] Robinson L, Salma-Ancane K, Stipniece L, Meenan B J, Boyd A R. The deposition of strontium and zinc Co-substituted hydroxyapatite coatings[J]. J Mater. Sci. Mater. Med., 2017, 28(3): 51.
[40] Baradaran S, Nasiri-Tabrizi B, Shirazi F S, Saber-Samandari S, Shahtalebi S, Basirun W J. Wet chemistry approach to the preparation of tantalum-doped hydroxyapatite: dopant content effects[J]. Ceram. Int., 2018, 44(3): 2768-2781.
[41] Ma X L, Ning G Q, Qi C L, Xu C G, Gao J S. Phosphorus and nitrogen dual-doped few-layered porous graphene: A high-performance anode material for lithium-ion batteries[J]. ACS Appl. Mater. Interfaces, 2014, 6(16): 14415-14422.
[42] Guo M Q, Huang J Q, Kong X Y, Peng H J, Shui H, Qian F Y, Zhu L, Zhu W C, Zhang Q. Hydrothermal synthesis of porous phosphorus-doped carbon nanotubes and their use in the oxygen reduction reaction and lithium-sulfur batteries[J]. New Carbon Mater., 2016, 31(3): 352-362.
[43] Wu H L, Mou J R, Zhou L, Zheng Q J, Jiang N, Lin D M. Cloud cap-like, hierarchically porous carbon derived from mushroom as an excellent host cathode for high performance lithium-sulfur batteries[J]. Electrochim. Acta, 2016, 212: 1021-1030.
[44] Do V, Deepika, Kim M S, Kim MS, Lee K R, Cho W I. Carbon nitride phosphorus as an effective lithium polysulfide adsorbent for lithium-sulfur batteries[J]. ACS Appl. Mater. Interfaces, 2019, 11(12): 11431-11441.
[45] Yang J, Chen F, Li C, Bai T, Long B, Zhou X Y. A free-standing sulfur-doped microporous carbon interlayer derived from luffa sponge for high performance lithium-sulfur batteries[J]. J. Mater. Chem. A, 2016, 4(37): 14324-14333.
[46] Wu X H, Mirolo M, Vaz C A F, Novak P, El Kazzi M. Reactivity and potential profile across the electrochemical LiCoO2-Li3PS4 interface probed by operando X-ray photoelectron spectroscopy[J]. ACS Appl. Mater. Interfaces, 2021, 13(36): 42670-42681.
[47] Luo C, Zhu Y J, Borodin O, Gao T, Fan X L, Xu Y H, Xu K, Wang C S. Activation of oxygen-stabilized sulfur for Li and Na batteries[J]. Adv. Funct. Mater., 2016, 26(5): 745-752.
[48] Liu X, Huang J Q, Zhang Q, Mai L Q. Nanostructured metal oxides and sulfides for lithium-sulfur batteries[J]. Adv. Mater., 2017, 29(20): 1601759.
[49] Mikhaylik Y V, Akridge J R. Polysulfide shuttle study in the Li/S battery system[J]. J. Electrochem. Soc., 2004, 151(11): A1969.
[50] Cheon S E, Ko K S, Cho J H, Kim S W, Chin E Y, Kim H T. Rechargeable lithium sulfur battery[J]. J. Electrochem. Soc., 2003, 150(6): A796.
[51] Huang J Q, Zhang Q, Zhang S M, Liu X F, Zhu W, Qian W Z, Wei F. Aligned sulfur-coated carbon nanotubes with a polyethylene glycol barrier at one end for use as a high efficiency sulfur cathode[J]. Carbon, 2013, 58: 99-106.
[52] Yuan Z, Peng H J, Hou T Z, Huang J Q, Chen C M, Wang D W, Cheng X B, Wei F, Zhang Q. Powering lithium-sulfur battery performance by propelling polysulfide redox at sulfiphilic hosts[J]. Nano Lett., 2016, 16(1): 519-527.
文章导航

/