固态锂硫电池研究进展
收稿日期: 2022-08-23
修回日期: 2022-09-14
录用日期: 2022-10-06
网络出版日期: 2022-10-08
Recent Research Progresses of Solid-State Lithium-Sulfur Batteries
#Yu Luo and Ru-Qin Ma contributed equally to this work.
Received date: 2022-08-23
Revised date: 2022-09-14
Accepted date: 2022-10-06
Online published: 2022-10-08
Supported by
National Natural Science Foundation of China(21935009);National Key R&D Program of China(2021YFB2401800)
固态锂硫电池具有高能量密度和高安全性的潜在优势,被认为是最有前景的下一代储能体系之一。虽然固态电解质的应用有效地抑制了传统锂硫电池存在的“穿梭效应”和自放电现象,固态锂硫电池仍面临着多相离子/电子输运、电极/电解质界面稳定性、化学-机械稳定性、电极结构稳定性和锂枝晶生长等关键问题亟待解决。针对以上问题,本综述对近年来固态电解质、硫基复合正极、锂金属及锂合金负极以及电极/电解质界面的研究进行了详细的论述。作为固态锂硫电池的重要组成部分,固态电解质近年来受到了研究者们的广泛关注。本文首先对在锂硫电池中得到广泛应用的聚合物基、氧化物基、硫化物基固态电解质的种类和性质进行了概述,并对其在固态锂硫电池中的最新应用进行了系统的总结。在此基础上,对以单质硫、硫化锂、金属硫化物为活性物质的复合硫正极、锂金属及锂合金负极的反应机理以及面临的挑战进行了归纳和比较,对其解决策略进行了总结和分析。此外,对制约固态锂硫电池性能的电极/电解质界面离子/电子输运以及界面相容性问题及其改性策略进行了系统的阐述。最后,对固态锂硫电池的未来发展进行了展望。
罗宇 , 马如琴 , 龚正良 , 杨勇 . 固态锂硫电池研究进展[J]. 电化学, 2023 , 29(3) : 2217007 . DOI: 10.13208/j.electrochem.2217007
All solid-state lithium-sulfur batteries (ASSLSBs) are considered to be one of the most promising next-generation energy storage systems, due to the promises of high energy density and safety. Although the use of solid-state electrolytes could effectively suppress the "shuttle effect" and self-discharge of the conventional liquid lithium-sulfur (Li-S) battery, the commercialization of ASSLSBs has been seriously hampered by the electrolyte degradation, electrode/electrolyte interfacial deterioration, electrochemo-mechanical failure, lithium dendrite growth and electrode pulverization, etc. This paper provides a comprehensive review of recent research progresses on the solid-state electrolytes, sulfur-containing composite cathodes, lithium metal and lithium alloy anodes, and electrode/electrolyte interfaces in ASSLSBs. Specifically, lithium sulfide and metal sulfide as new active cathode materials, and lithium alloy as new anode materials are overviewed and analyzed. In addition, some newly developed interfacial modification strategies for addressing the electrode/electrolyte interfacial challenges are also outlined. Furthermore, an outlook on the future research and development of high-performance ASSLSBs are also presented.
[1] | Yang X F, Luo J, Sun X L. Towards high-performance solid-state Li-S batteries: From fundamental understanding to engineering design[J]. Chem. Soc. Rev., 2020, 49(7): 2140-2195. |
[2] | Umeshbabu E, Zheng B Z, Yang Y. Recent progress in all-solid-state lithium-sulfur batteries using high Li-ion conductive solid electrolytes[J]. Electrochem. Energy Rev., 2019, 2(2): 199-230. |
[3] | Wu J H, Shen L, Zhang Z H, Liu G Z, Wang Z Y, Zhou D, Wan H L, Xu X X, Yao X Y. All-solid-state lithium batteries with sulfide electrolytes and oxide cathodes[J]. Electrochem. Energy Rev., 2021, 4(1): 101-135. |
[4] | Wu J H, Liu S F, Han F D, Yao X Y, Wang C S. Lithium/sulfide all-solid-state batteries using sulfide electrolytes[J]. Adv. Mater., 2021, 33(6) : 2000751. |
[5] | Ohno S, Zeier W G. Toward practical solid-state lithium-sulfur batteries: Challenges and perspectives[J]. Acc. Mater. Res., 2021, 2(10): 869-880. |
[6] | Schlem R, Burmeister C F, Michalowski P, Ohno S, Dewald G F, Kwade A, Zeier W G. Energy storage materials for solid-state batteries: Design by mechanochemistry[J]. Adv. Energy Mater., 2021, 11(30): 2101022. |
[7] | Li M Y, Liu T, Shi Z, Xue W J, Hu Y S, Li H, Huang X J, Li J, Suo L M, Chen L Q. Dense all-electrochem-active electrodes for all-solid-state lithium batteries[J]. Adv. Mater., 2021, 33(26): 2008723. |
[8] | Cai X M, Cui B W, Ye B, Wang W Q, Ding J L, Wang G C. Poly(ionic liquid)-based quasi-solid-state copolymer electrolytes for dynamic-reversible adsorption of lithium polysulfides in lithium-sulfur batteries[J]. ACS Appl. Mater. Inter., 2019, 11(41): 38136-38146. |
[9] | Guan X, Wu Q P, Zhang X W, Guo X H, Li C L, Xu J. In-situ crosslinked single ion gel polymer electrolyte with superior performances for lithium metal batteries[J]. Chem. Eng. J., 2020, 382: 122935. |
[10] | Mackanic D G, Michaels W, Lee M, Feng D W, Lopez J, Qin J, Cui Y, Bao Z N. Crosslinked poly(tetrahydrofuran) as a loosely coordinating polymer electrolyte[J]. Adv. Energy Mater., 2018, 8(25): 1800703. |
[11] | Judez X, Zhang H, Li C M, Eshetu G G, Zhang Y, Gonzalez-Marcos J A, Armand M, Rodriguez-Martinez L M. Polymer-rich composite electrolytes for all-solid-state Li-S cells[J]. J. Phys. Chem. Lett., 2017, 8(15): 3473-3477. |
[12] | Wang L L, Ye Y S, Chen N, Huang Y X, Li L, Wu F, Chen R J. Development and challenges of functional electrolytes for high-performance lithium-sulfur batteries[J]. Adv. Funct. Mater., 2018, 28(38): 1800919. |
[13] | Pan K C, Zhang L, Qian W W, Wu X K, Dong K, Zhang H T, Zhang S J. A flexible ceramic/polymer hybrid solid electrolyte for solid-state lithium metal batteries[J]. Adv. Mater., 2020, 32(17): 2000399. |
[14] | Dixit M B, Zaman W, Hortance N, Vujic S, Harkey B, Shen F Y, Tsai W Y, De Andrade V, Chen X C, Balke N, Hatzell K B. Nanoscale mapping of extrinsic interfaces in hybrid solid electrolytes[J]. Joule, 2020, 4(1): 207-221. |
[15] | Wang G L, Zhu X Y, Rashid A, Hu Z L, Sun P F, Zhang Q B, Zhang L. Organic polymeric filler-amorphized poly(ethylene oxide) electrolyte enables all-solid-state lithium-metal batteries operating at 35 °C[J]. J. Mater. Chem. A, 2020, 8(26): 13351-13363. |
[16] | Sheng O W, Jin C B, Luo J M, Yuan H D, Fang C, Huang H, Gan Y P, Zhang J, Xia Y, Liang C, Zhang W K, Tao X Y. Ionic conductivity promotion of polymer electrolyte with ionic liquid grafted oxides for all-solid-state lithium-sulfur batteries[J]. J. Mater. Chem. A, 2017, 5(25): 12934-12942. |
[17] | Cai X M, Ding J L, Chi Z Y, Wang W Q, Wang D Y, Wang G C. Rearrangement of ion transport path on nano-cross-linker for all-solid-state electrolyte with high room temperature ionic conductivity[J]. ACS Nano, 2021, 15(12): 20489-20503. |
[18] | Zhang H, Oteo U, Judez X, Eshetu G G, Martinez-Ibanez M, Carrasco J, Li C M, Armand M. Designer anion enabling solid-state lithium-sulfur batteries[J]. Joule, 2019, 3(7): 1689-1702. |
[19] | Wang Y, Ji H F, Zhang X J, Shi J J, Li X N, Jiang X X, Qu X W. Cyclopropenium cationic-based covalent organic polymer-enhanced poly(ethylene oxide) composite polymer electrolyte for all-solid-state Li-S battery[J]. ACS Appl. Mater. Interfaces, 2021, 13(14): 16469-16477. |
[20] | Marceau H, Kim C S, Paolella A, Ladouceur S, Lagace M, Chaker M, Vijh A, Guerfi A, Julien C M, Mauger A, Armand M, Hovington P, Zaghib K. In operando scanning electron microscopy and ultraviolet-visible spectroscopy studies of lithium/sulfur cells using all solid-state polymer electrolyte[J]. J. Power Sources, 2016, 319: 247-254. |
[21] | Song Y X, Shi Y, Wan J, Lang S Y, Hu X C, Yan H J, Liu B, Guo Y G, Wen R, Wan L J. Direct tracking of the polysulfide shuttling and interfacial evolution in all-solid-state lithium-sulfur batteries: A degradation mechanism study[J]. Energy Environ. Sci., 2019, 12(8): 2496-2506. |
[22] | Li X, Wang D H, Wang H C, Yan H F, Gong Z L, Yang Y. Poly(ethylene oxide)-Li10SnP2S12 composite polymer electrolyte enables high-performance all-solid-state lithium sulfur battery[J]. ACS Appl. Mater. Inter., 2019, 11(25): 22745-22753. |
[23] | Bai Y, Zhao Y B, Li W D, Meng L H, Bai Y P, Chen G R. New insight for solid sulfide electrolytes LSiPSI by using Si/P/S as the raw materials and I doping[J]. ACS Sustain. Chem. Eng., 2019, 7(15): 12930-12937. |
[24] | Liu Y, Liu H W, Lin Y T, Zhao Y X, Yuan H, Su Y P, Zhang J F, Ren S Y, Fan H Y, Zhang Y G. Mechanistic investigation of polymer-based all-solid-state lithium/sulfur battery[J]. Adv. Funct. Mater., 2021, 31(41): 2104863. |
[25] | Gao X, Zheng X L, Tsao Y C, Zhang P, Xiao X, Ye Y S, Li J, Yang Y F, Xu R, Bao Z N, Cui Y. All-solid-state lithium-sulfur batteries enhanced by redox mediators[J]. J. Am. Chem. Soc., 2021, 143(43): 18188-18195. |
[26] | Ji Y C, Yang K, Liu M Q, Chen S M, Liu X H, Yang B, Wang Z J, Huang W Y, Song Z B, Xue S D, Fu Y D, Yang L Y, Miller T S, Pan F. PIM-1 as a multifunctional framework to enable high-performance solid-state lithium-sulfur batteries[J]. Adv. Funct. Mater., 2021, 31(47): 2104830. |
[27] | Kim K J, Balaish M, Wadaguchi M, Kong LP, Rupp J L M. Solid-state Li-metal batteries: Challenges and horizons of oxide and sulfide solid electrolytes and their interfaces[J]. Adv. Energy Mater., 2021, 11(1): 2002689. |
[28] | AbdelHamid A A, Cheong J L, Ying J Y. Li7La3Zr2O12 sheet-based framework for high-performance lithium-sulfur hybrid quasi-solid battery[J]. Nano Energy, 2020, 71: 104633. |
[29] | Yu X W, Liu Y J, Goodenough J B, Manthiram A. Rationally designed PEGDA-LLZTO composite electrolyte for solid-state lithium batteries[J]. ACS Appl. Mater. Inter., 2021, 13(26): 30703-30711. |
[30] | Bag S, Zhou C, Kim P J, Pol V G, Thangadurai V. LiF modified stable flexible PVDF-garnet hybrid electrolyte for high performance all-solid-state Li-S batteries[J]. Energy Storage Mater., 2020, 24: 198-207. |
[31] | Li W W, Sun C Z, Jin J, Li Y P, Chen C H, Wen Z Y. Realization of the Li+ domain diffusion effect via constructing molecular brushes on the LLZTO surface and its application in all-solid-state lithium batteries[J]. J. Mater. Chem. A, 2019, 7(48): 27304-27312. |
[32] | Yan C Y, Zhou Y, Cheng H, Orenstein R, Zhu P, Yildiz O, Bradford P, Jur J, Wu N Q, Dirican M, Zhang X W. Interconnected cathode-electrolyte double-layer enabling continuous Li-ion conduction throughout solid-state Li-S battery[J]. Energy Storage Mater., 2022, 44: 136-144. |
[33] | Kou W J, Wang J X, Li W P, Lv R X, Peng N, Wu W J, Wang J T. Asymmetry-structure electrolyte with rapid Li+ transfer pathway towards high-performance all-solid-state lithium-sulfur battery[J]. J. Membr. Sci., 2021, 634: 119432. |
[34] | Liu Z C, Fu W J, Payzant E A, Yu X, Wu Z L, Dudney N J, Kiggans J, Hong K L, Rondinone A J, Liang C D. Anomalous high ionic conductivity of nanoporous β-Li3PS4[J]. J. Am. Chem. Soc., 2013, 135(3): 975-978. |
[35] | Mizuno F, Hayashi A, Tadanaga K, Tatsumisago M. New, highly ion-conductive crystals precipitated from Li2S-P2S5 glasses[J]. Adv. Mater., 2005, 17(7): 918-921. |
[36] | Seino Y, Ota T, Takada K, Hayashi A, Tatsumisago M. A sulphide lithium super ion conductor is superior to liquid ion conductors for use in rechargeable batteries[J]. Energy Environ. Sci., 2014, 7(2): 627-631. |
[37] | Kanno R, Maruyama M. Lithium ionic conductor thio-LISICON: the Li2S-GeS2-P2S5 system[J]. J. Electrochem. Soc., 2001, 148(7): A742-A746. |
[38] | Ong S P, Mo Y F, Richards W D, Miara L, Lee H S, Ceder G. Phase stability, electrochemical stability and ionic conductivity of the Li10±1MP2X12 (M = Ge, Si, Sn, Al or P, and X = O, S or Se) family of superionic conductors[J]. Energy Environ. Sci., 2013, 6(1): 148-156. |
[39] | Boulineau S, Courty M, Tarascon J M, Viallet V. Mechanochemical synthesis of Li-argyrodite Li6PS5X (X = Cl, Br, I) as sulfur-based solid electrolytes for all solid state batteries application[J]. Solid State Ion., 2012, 221: 1-5. |
[40] | Chen S R, Niu C J, Lee H, Li Q Y, Yu L, Xu W, Zhang J G, Dufek E J, Whittingham M S, Meng S, Xiao J, Liu J. Critical parameters for evaluating coin cells and pouch cells of rechargeable Li-metal batteries[J]. Joule, 2019, 3(4): 1094-1105. |
[41] | Liang J W, Chen N, Li X N, Li X, Adair K R, Li J J, Wang C H, Yu C, Banis M N, Zhang L, Zhao S Q, Lu S G, Huang H, Li R Y, Huang Y N, Sun X L. Li10Ge(P1-xSbx)2S12 lithium-ion conductors with enhanced atmospheric stability[J]. Chem. Mat., 2020, 32(6): 2664-2672. |
[42] | Bonnick P, Niitani K, Nose M, Suto K, Arthur T S, Muldoon J. A high performance all solid state lithium sulfur battery with lithium thiophosphate solid electrolyte[J]. J. Mater. Chem. A, 2019, 7(42): 24173-24179. |
[43] | Tufail M K, Zhou L, Ahmad N, Chen R J, Faheem M, Yang L, Yang W. A novel air-stable Li7Sb0.05P2.95S10.5I0.5 superionic conductor glass-ceramics electrolyte for all-solid-state lithium-sulfur batteries[J]. Chem. Eng. J., 2021, 407: 127149. |
[44] | Wu Z J, Xie Z K, Yoshida A, An X W, Wang Z D, Hao X G, Abudula A, Guan G Q. Novel SeS2 doped Li2S-P2S5 solid electrolyte with high ionic conductivity for all-solid-state lithium sulfur batteries[J]. Chem. Eng. J., 2020, 380: 122419. |
[45] | Yu C, Hageman J, Ganapathy S, van Eijck L, Zhang L, Adair K R, Sun X L, Wagemaker M. Tailoring Li6PS5Br ionic conductivity and understanding of its role in cathode mixtures for high performance all-solid-state Li-S batteries[J]. J. Mater. Chem. A, 2019, 7(17): 10412-10421. |
[46] | Zhou L, Tufail M K, Ahmad N, Song T L, Chen R J, Yang W. Strong interfacial adhesion between the Li2S cathode and a functional Li7P2.9Ce0.2S10.9Cl0.3 solid-state electrolyte endowed long-term cycle stability to all-solid-state lithium-sulfur batteries[J]. ACS Appl. Mater. Inter., 2021, 13(24): 28270-28280. |
[47] | Wei C C, Yu C, Peng L F, Zhang Z Q, Xu R N, Wu Z K, Liao C, Zhang W, Zhang L, Cheng S J, Xie J. Tuning ionic conductivity to enable all-climate solid-state Li-S batteries with superior performances[J]. Mater. Adv., 2022, 3(2): 1047-1054. |
[48] | Zhu Y Z, He X F, Mo Y F. Origin of outstanding stability in the lithium solid electrolyte materials: Insights from thermodynamic analyses based on first-principles calculations[J]. ACS Appl. Mater. Inter., 2015, 7(42): 23685-23693. |
[49] | Han F D, Zhu Y Z, He X F, Mo Y F, Wang C S. Electrochemical stability of Li10GeP2S12 and Li7La3Zr2O12solid electrolytes[J]. Adv. Energy Mater., 2016, 6(8): 1501590. |
[50] | Bai X T, Yu T W, Ren Z M, Gong S M, Yang R, Zhao C R. Key issues and emerging trends in sulfide all solid state lithium battery[J]. Energy Storage Mater., 2022, 51: 527-549. |
[51] | Zhang Z X, Zhang L, Yan X L, Wang H Q, Liu Y Y, Yu C, Cao X T, van Eijck L, Wen B. All-in-one improvement toward Li6PS5Br-based solid electrolytes triggered by compositional tune[J]. J. Power Sources, 2019, 410: 162-170. |
[52] | Wu F, Fitzhugh W, Ye L H, Ning J X, Li X. Advanced sulfide solid electrolyte by core-shell structural design[J]. Nat. Commun., 2018, 9: 4037. |
[53] | Nikodimos Y, Huang C J, Taklu B W, Su W N, Hwang B J. Chemical stability of sulfide solid-state electrolytes: Stability toward humid air and compatibility with solvents and binders[J]. Energy Environ. Sci., 2022, 15(3): 991-1033. |
[54] | Jiang Z, Peng H L, Liu Y, Li Z X, Zhong Y, Wang X L, Xia X H, Gu C D, Tu J P. A versatile Li6.5In0.25P0.75S5I sulfide electrolyte triggered by ultimate-energy mechanical alloying for all-solid-state lithium metal batteries[J]. Adv. Energy Mater., 2021, 11(36): 2101521. |
[55] | Tufail M K, Ahmad N, Zhou L, Faheem M, Yang L, Chen R J, Yang W. Insight on air-induced degradation mechanism of Li7P3S11 to design a chemical-stable solid electrolyte with high Li2S utilization in all-solid-state Li/S batteries[J]. Chem. Eng. J., 2021, 425: 130535. |
[56] | Yao X Y, Huang N, Han F D, Zhang Q, Wan H L, Mwizerwa J P, Wang C S, Xu X X. High-performance all-solid-state lithium-sulfur batteries enabled by amorphous sulfur-coated reduced graphene oxide cathodes[J]. Adv. Energy Mater., 2017, 7(17): 1602923. |
[57] | Wang S, Bai Q, Nolan A M, Liu Y S, Gong S, Sun Q, Mo Y F. Lithium chlorides and bromides as promising solid-state chemistries for fast ion conductors with good electrochemical stability[J]. Angew. Chem. Int. Edit., 2019, 58(24): 8039-8043. |
[58] | Emly A, Kioupakis E, Van der Ven A. Phase stability and transport mechanisms in antiperovskite Li3OCl and Li3OBr superionic conductors[J]. Chem. Mat., 2013, 25(23): 4663-4670. |
[59] | Shi X M, Zeng Z C, Sun M Z, Huang B L, Zhang H T, Luo W, Huang Y H, Du Y P, Yan C H. Fast Li-ion conductor of Li3HoBr6 for stable all-solid-state lithium-sulfur battery[J]. Nano Lett., 2021, 21(21): 9325-9331. |
[60] | Han F D, Yue J, Fan X L, Gao T, Luo C, Ma Z H, Suo L M, Wang C S. High-performance all-solid-state lithium-sulfur battery enabled by a mixed-conductive Li2S nanocomposite[J]. Nano Lett., 2016, 16(7): 4521-4527. |
[61] | Zhang Q, Huang N, Huang Z, Cai L T, Wu J H, Yao X Y. CNTs@S composite as cathode for all-solid-state lithium-sulfur batteries with ultralong cycle life[J]. J. Energy Chem., 2020, 40: 151-155. |
[62] | Hou L P, Yuan H, Zhao C Z, Xu L, Zhu G L, Nan H X, Cheng X B, Liu Q B, He C X, Huang J Q, Zhang Q. Improved interfacial electronic contacts powering high sulfur utilization in all-solid-state lithium-sulfur batteries[J]. Energy Storage Mater., 2020, 25: 436-442. |
[63] | Li X N, Liang J W, Luo J, Wang C H, Li X, Sun Q, Li R Y, Zhang L, Yang R, Lu S G, Huang H, Sun X L. High-performance Li-SeSx all-solid-state lithium batteries[J]. Adv. Mater., 2019, 31(17): 1808100. |
[64] | Tanibata N, Tsukasaki H, Deguchi M, Mori S, Hayashi A, Tatsumisago M. A novel discharge-charge mechanism of a S-P2S5 composite electrode without electrolytes in all-solid-state Li/S batteries[J]. J. Mater. Chem. A, 2017, 5(22): 11224-11228. |
[65] | Yao X Y, Liu D, Wang C S, Long P, Peng G, Hu Y S, Li H, Chen L Q, Xu X X. High-energy all-solid-state lithium batteries with ultralong cycle life[J]. Nano Lett., 2016, 16(11): 7148-7154. |
[66] | Sun X, Li Q, Cao D X, Wang Y, Anderson A, Zhu H L. High surface area N-doped carbon fibers with accessible reaction sites for all-solid-state lithium-sulfur batteries[J]. Small, 2022, 18(6): 2105678. |
[67] | Wang L, Yin X S, Li B, Zheng G W. Mixed ionically/electronically conductive double-phase interface enhanced solid-state charge transfer for a high-performance all-solid-state Li-S battery[J]. Nano Lett., 2022, 22(1): 433-440. |
[68] | Sakuda A, Sato Y, Hayashi A, Tatsumisago M. Sulfur-based composite electrode with interconnected mesoporous carbon for all-solid-state lithium-sulfur batteries[J]. Energy Technol., 2019, 7(12): 1900077. |
[69] | Dewald G F, Ohno S, Hering J G C, Janek J, Zeier W G. Analysis of charge carrier transport toward optimized cathode composites for all-solid-state Li-S batteries[J]. Batteries Supercaps, 2021, 4(1): 183-194. |
[70] | Liu Y Z, Meng X Y, Wang Z Y, Qiu J S. A Li2S-based all-solid-state battery with high energy and superior safety[J]. Sci. Adv., 2022, 8(1): eabl8390. |
[71] | Gamo H, Maeda T, Hikima K, Deguchi M, Fujita Y, Kawasaki Y, Sakuda A, Muto H, Phuc NHH, Hayashi A. Synthesis of an AlI3-doped Li2S positive electrode with superior performance in all-solid-state batteries[J]. Mater. Adv., 2022, 3(5): 2488-2494. |
[72] | He Y M, Chen W J, Zhao Y M, Li Y F, Lv C Y, Li H X, Yang J G, Gao Z L, Luo J Y. Recent developments and progress of halogen elements in enhancing the performance of all-solid-state lithium metal batteries[J]. Energy Storage Mater., 2022, 49: 19-57. |
[73] | Wan H L, Zhang B, Liu S F, Zhang J X, Yao X Y, Wang C S. Understanding LiI-LiBr catalyst activity for solid state Li2S/S reactions in an all-solid-state lithium battery[J]. Nano Lett., 2021, 21(19): 8488-8494. |
[74] | Jiang M, Liu G Z, Zhang Q, Zhou D, Yao X Y. Ultrasmall Li2S-carbon nanotube nanocomposites for high-rate all-solid-state lithium-sulfur batteries[J]. ACS Appl. Mater. Inter., 2021, 13(16): 18666-18672. |
[75] | Jiang H Z, Han Y, Wang H, Zhu Y H, Guo Q P, Jiang H L, Zheng C M, Xie K. Facile synthesis of a mixed-conductive Li2S composites for all-solid-state lithium-sulfur batteries[J]. Ionics, 2020, 26(9): 4257-4265. |
[76] | Wang D H, Wu Y Q, Zheng X F, Tang S J, Gong Z L, Yang Y. Li2S @NC composite enable high active material loading and high Li2S utilization for all-solid-state lithium sulfur batteries[J]. J. Power Sources, 2020, 479: 228792. |
[77] | Gao X, Zheng X L, Wang J Y, Zhang Z W, Xiao X, Wan J Y, Ye Y S, Chou L Y, Lee H K, Wang J Y, Vila R A, Yang Y F, Zhang P, Wang LW, Cui Y. Incorporating the nanoscale encapsulation concept from liquid electrolytes into solid-state lithium-sulfur batteries[J]. Nano Lett., 2020, 20(7): 5496-5503. |
[78] | Yan H F, Wang H C, Wang D H, Li X, Gong Z L, Yang Y. In situ generated Li2S -C nanocomposite for high-capacity and long-life all-solid-state lithium sulfur batteries with ultrahigh areal mass loading[J]. Nano Lett., 2019, 19(5): 3280-3287. |
[79] | Jiang H Z, Han Y, Wang H, Zhu Y H, Guo Q P, Jiang H L, Sun W W, Zheng C M, Xie K. In-situ generated Li2S-based composite cathodes with high mass and capacity loading for all-solid-state Li-S batteries[J]. J. Alloy. Compd., 2021, 874: 159763. |
[80] | El-Shinawi H, Cussen E J, Corr S A. A facile synthetic approach to nanostructured Li2S cathodes for rechargeable solid-state Li-S batteries[J]. Nanoscale, 2019, 11(41): 19297-19300. |
[81] | Li M Y, Pan H Y, Liu T, Xiong X L, Yu X Q, Hu Y S, Li H, Huang X J, Suo L M, Chen L Q. All-in-one ionic-electronic dual-carrier conducting framework thickening all-solid-state electrode[J]. ACS Energy Lett., 2022, 7(2): 766-772. |
[82] | Wan H L, Liu G Z, Li Y L, Weng W, Mwizerwa J P, Tian Z Q, Chen L, Yao X Y. Transitional metal catalytic pyrite cathode enables ultrastable four-electron-based all-solid-state lithium batteries[J]. ACS Nano, 2019, 13(8): 9551-9560. |
[83] | Xu S Q, Kwok C Y, Zhou L D, Zhang Z Z, Kochetkov I, Nazar L F. A high capacity all solid-state Li-sulfur battery enabled by conversion-intercalation hybrid cathode architecture[J]. Adv. Funct. Mater., 2021, 31(2): 2004239. |
[84] | Santhosha A L, Nazer N, Koerver R, Randau S, Richter F H, Weber D A, Kulisch J, Adermann T, Janek J, Adelhelm P. Macroscopic displacement reaction of copper sulfide in lithium solid-state batteries[J]. Adv. Energy Mater., 2020, 10(41): 2002394. |
[85] | Zhang Q, Ding Z G, Liu G Z, Wan H L, Mwizerwa J P, Wu J H, Yao X Y. Molybdenum trisulfide based anionic redox driven chemistry enabling high-performance all-solid-state lithium metal batteries[J]. Energy Storage Mater., 2019, 23: 168-180. |
[86] | Dewald G F, Liaqat Z, Lange M A, Tremel W, Zeier W G. Influence of iron sulfide nanoparticle sizes in solid-state batteries[J]. Angew. Chem. Int. Edit., 2021, 60(33): 17952-17956. |
[87] | Santhosha A L, Nayak P K, Pollok K, Langenhorst F, Adelhelm P. Exfoliated MoS2 as electrode for all-solid-state rechargeable lithium-ion batteries[J]. J. Phys. Chem. C, 2019, 123(19): 12126-12134. |
[88] | Yamakawa N, Jiang M, Grey C P. Investigation of the conversion reaction mechanisms for binary copper(II) compounds by solid-state NMR spectroscopy and X-ray diffraction[J]. Chem. Mat., 2009, 21(14): 3162-3176. |
[89] | Hosseini S M, Varzi A, Ito S, Aihara Y, Passerini S. High loading CuS-based cathodes for all-solid-state lithium sulfur batteries with enhanced volumetric capacity[J]. Energy Storage Mater., 2020, 27: 61-68. |
[90] | Pan H, Zhang M H, Cheng Z, Jiang H Y, Yang J G, Wang P F, He P, Zhou H S. Carbon-free and binder-free Li-Al alloy anode enabling an all-solid-state Li-S battery with high energy and stability[J]. Sci. Adv., 2022, 8(15): eabn4372. |
[91] | Tan D H S, Chen Y T, Yang H D, Bao W, Sreenarayanan B, Doux J M, Li W K, Lu B Y, Ham S Y, Sayahpour B, Scharf J, Wu E A, Deysher G, Han H E, Hah H J, Jeong H, Lee J B, Chen Z, Meng Y S. Carbon-free high-loading silicon anodes enabled by sulfide solid electrolytes[J]. Science, 2021, 373(6562): 1494-1499. |
[92] | Chen Z R, Liang Z T, Zhong H Y, Su Y, Wang K J, Yang Y. Bulk/interfacial synergetic approaches enable the stable anode for high energy density all-solid-state lithium-sulfur batteries[J]. ACS Energy Lett., 2022, 7(8): 2761-2770. |
[93] | Shin M, Gewirth A A. Incorporating solvate and solid electrolytes for all-solid-state Li2S batteries with high capacity and long cycle life[J]. Adv. Energy Mater., 2019, 9(26): 1900938. |
[94] | Sun X, Stavola A M, Cao D X, Bruck A M, Wang Y, Zhang Y L, Luan P C, Gallaway J W, Zhu H L. Operando EDXRD study of all-solid-state lithium batteries coupling thioantimonate superionic conductors with metal sulfide[J]. Adv. Energy Mater., 2021, 11(3): 2002861. |
[95] | Liu M, Wang C, Zhao C L, van der Maas E, Lin K, Arszelewska V A, Li B H, Ganapathy S, Wagemaker M. Quantification of the Li-ion diffusion over an interface coating in all-solid-state batteries via NMR measurements[J]. Nat. Commun., 2021, 12(1): 5943. |
[96] | Umeshbabu E, Zheng B Z, Zhu J P, Wang H C, Li Y X, Yang Y. Stable cycling lithium-sulfur solid batteries with enhanced Li/Li10GeP2S12 solid electrolyte interface stability[J]. ACS Appl. Mater. Inter., 2019, 11(20): 18436-18447. |
[97] | Lou S F, Zhang F, Fu C K, Chen M, Ma Y L, Yin G P, Wang J J. Interface issues and challenges in all-solid-state batteries: Lithium, sodium, and beyond[J]. Adv. Mater., 2021, 33(6): 2000721. |
[98] | Wan H L, Mwizerwa J P, Qi X G, Liu X, Xu X X, Li H, Hu Y S, Yao X Y. Core-shell Fe1-xS@Na2.9PS3.95Se0.05 nanorods for room temperature all-solid-state sodium batteries with high energy density[J]. ACS Nano, 2018, 12(3): 2809-2817. |
[99] | Shi J M, Liu G Z, Weng W, Cai L T, Zhang Q, Wu J H, Xu X X, Yao X Y. Co3S4@Li7P3S11 hexagonal platelets as cathodes with superior interfacial contact for all-solid-state lithium batteries[J]. ACS Appl. Mater. Inter., 2020, 12(12): 14079-14086. |
[100] | Xu R C, Wang X L, Zhang S Z, Xia Y, Xia X H, Wu J B, Tu J P. Rational coating of Li7P3S11 solid electrolyte on MoS2 electrode for all-solid-state lithium ion batteries[J]. J. Power Sources, 2018, 374: 107-112. |
[101] | Sun N, Liu Q S, Cao Y, Lou S F, Ge M Y, Xiao X H, Lee W K, Gao Y Z, Yin G P, Wang J J, Sun X L. Anisotropically electrochemical-mechanical evolution in solid-state batteries and interfacial tailored strategy[J]. Angew. Chem. Int. Edit., 2019, 58(51): 18647-18653. |
[102] | Xu J, Liu L, Yao N, Wu F, Li H, Chen L. Liquid-involved synthesis and processing of sulfide-based solid electrolytes, electrodes, and all-solid-state batteries[J]. Mater. Today Nano, 2019, 8: 100048. |
[103] | Cao Y, Zuo P J, Lou S F, Sun Z, Li Q, Huo H, Ma Y L, Du C Y, Gao Y Z, Yin G P. A quasi-solid-state Li-S battery with high energy density, superior stability and safety[J]. J. Mater. Chem. A, 2019, 7(11): 6533-6542. |
[104] | Lou S F, Liu Q W, Zhang F, Liu Q S, Yu Z J, Mu T S, Zhao Y, Borovilas J, Chen Y J, Ge M Y, Xiao X H, Lee W K, Yin G P, Yang Y, Sun X L, Wang J J. Insights into interfacial effect and local lithium-ion transport in polycrystalline cathodes of solid-state batteries[J]. Nat. Commun., 2020, 11(1): 5700. |
[105] | Zhu C B, Usiskin R E, Yu Y, Maier J. The nanoscale circuitry of battery electrodes[J]. Science, 2017, 358(6369): eaao2808. |
[106] | Hakari T, Fujita Y, Deguchi M, Kawasaki Y, Otoyama M, Yoneda Y, Sakuda A, Tatsumisago M, Hayashi A. Solid electrolyte with oxidation tolerance provides a high-capacity Li2S-based positive electrode for all-solid-state Li/S batteries[J]. Adv. Funct. Mater., 2022, 32(5): 2106174. |
[107] | Kim S, Oguchi H, Toyama N, Sato T, Takagi S, Otomo T, Arunkumar D, Kuwata N, Kawamura J, Orimo S. A complex hydride lithium superionic conductor for high-energy-density all-solid-state lithium metal batteries[J]. Nat. Commun., 2019, 10: 1081. |
[108] | Kisu K, Kim S, Yoshida R, Oguchi H, Toyama N, Orimo S. Microstructural analyses of all-solid-state Li-S batteries using LiBH4-based solid electrolyte for prolonged cycle performance[J]. J. Energy Chem., 2020, 50: 424-429. |
[109] | Ruan Y D, Lu Y, Huang X, Su J M, Sun C Z, Jin J, Wen Z Y. Acid induced conversion towards a robust and lithiophilic interface for Li-Li7La3Zr2O12 solid-state batteries[J]. J. Mater. Chem. A, 2019, 7(24): 14565-14574. |
[110] | Bosubahu D, Sivaraj J, Sampathkumar R, Ramesha K. Lagpili interface modification through a wetted polypropylene interlayer for solid state Li-ion and Li-S batteries[J]. ACS Appl. Energ. Mater., 2019, 2(6): 4118-4125. |
[111] | Judez X, Eshetu G G, Gracia I, Lopez-Aranguren P, Gonzalez-Marcos J A, Armand M, Rodriguez-Martinez L M, Zhang H, Li C M. Understanding the role of nano-aluminum oxide in all-solid-state lithium-sulfur batteries[J]. ChemElectroChem, 2019, 6(2): 326-330. |
[112] | Yin X S, Wang L, Kim Y, Ding N, Kong J H, Safanama D, Zheng Y, Xu J W, Repaka D V M, Hippalgaonkar K, Lee S W, Adams S, Zheng G W. Thermal conductive 2D boron nitride for high-performance all-solid-state lithium-sulfur batteries[J]. Adv. Sci., 2020, 7(19): 2001303. |
[113] | Fan Z J, Ding B, Zhang T F, Lin Q Y, Malgras V, Wang J, Dou H, Zhang X G, Yamauchi Y. Solid/solid interfacial architecturing of solid polymer electrolyte-based all-solid-state lithium-sulfur batteries by atomic layer deposition[J]. Small, 2019, 15(46): 1903952. |
[114] | Li J, Huo F, Chen T H, Yan H W, Yang Y X, Zhang S J, Chen S M. In-situ construction of stable cathode/Li interfaces simultaneously via different electron density AZO compounds for solid-state lithium metal batteries[J]. Energy Storage Mater., 2021, 40: 394-401. |
/
〈 |
|
〉 |