欢迎访问《电化学(中英文)》期刊官方网站,今天是
研究论文

泡沫铜支撑Ru掺杂Cu3P自支撑催化剂及其析氢性能

  • 万紫轩 ,
  • 王超辉 ,
  • 康雄武
展开
  • 华南理工大学环境与能源学院新能源研究所, 广东 广州 510006

收稿日期: 2022-06-23

  修回日期: 2022-07-26

  网络出版日期: 2022-08-23

A Self-Supported Ru-Cu3P Catalyst toward Alkaline Hydrogen Evolution

  • Zi-Xuan Wan ,
  • Chao-Hui Wang ,
  • Xiong-Wu Kang
Expand
  • New Energy Research Institute, School of Environment and Energy, South China University of Technology, Higher Education Mega Center, Guangzhou 510006, Guangdong, China
First author contact:

#These authors contribute equally to the paper.

*Tel: (86-20)39380520, E-mail: esxkang@scut.edu.cn

Received date: 2022-06-23

  Revised date: 2022-07-26

  Online published: 2022-08-23

摘要

过渡金属磷化物(TMP)是一种用于碱性条件下析氢反应(HER)的有效催化剂, 然而其活性严重受限于水解离步。本文通过在泡沫铜(CF)上生长Cu(OH)2纳米阵列, RuCl3溶液浸泡和磷酸化, 制备了一种具有较大比表面积和适当Ru掺杂的Ru-Cu3P自支撑催化剂(Ru-Cu3P/CF)。作为一种优良的HER催化剂,在电流密度为10 mA·cm-2时, 其过电位为95.6 mV, 比Cu3P/CF降低149.4 mV。其决速步由Volmer向Heyrovsky机制过渡。HER性能的提高可以归因于Ru掺杂磷化铜促进水解离过程,以及Cu(OH)2纳米阵列衍生Cu3P纳米结构具有更高的电化学活性面积, 从而保证了更多的活性位点。本论文突出了具有空的d轨道的金属掺杂促进水解离的重要性,为高性能电解水析氢催化剂的设计提供了新思路。

本文引用格式

万紫轩 , 王超辉 , 康雄武 . 泡沫铜支撑Ru掺杂Cu3P自支撑催化剂及其析氢性能[J]. 电化学, 2022 , 28(10) : 2214005 . DOI: 10.13208/j.electrochem.2214005

Abstract

Transition metal phosphide (TMP) is a kind of effective catalysts toward hydrogen evolution reaction (HER) in alkaline electrolytes. However, the performance of TMP catalysts is strongly limited by water splitting. In this work, we developed a method to prepare a copper foam (CF) supported Ru-doped Cu3P catalyst (Ru-Cu3P/CF) by a consecutive growth of Cu(OH)2 nanoarrays, soaking in RuCl3 solution and phosphorization. A large surface area was obtained by the self-supported catalysts with the appropriative Ru doping. As an excellent HER catalyst, it exhibited a low overpotential of 95.6 mV at a current density of 10 mA·cm-2, which is 149.4 mV lower than that of Cu3P/CF without Ru-doping. The Tafel slope was reduced from 136.6 to 73.6 mA·dec-1 and the rate determining step was changed from Volmer step to Heyrovsky step. The improvement of HER performance might be attributed to the facilitated water splitting step by Ru-doping, which provides more active sites for water splitting. The nanoparticles morphology of Ru-Cu3P derived from the Cu(OH)2 arrays ensured large electrochemical surface areas of the supported electrodes, which could promote the mass and electron transfers, and promote gas production and bubble release. This work highlights the importance of the tuning of the water splitting step and surface engineering by the transition metal with emptier d orbitals, which may pave the road for design of high-performance HER electrocatalyst.

参考文献

[1] Zhang L H, Chuai H Y, Liu H, Fan Q, Kuang S Y, Zhang S, Ma X B. Facet dependent oxygen evolution activity of spinel cobalt oxides[J]. J. Electrochem., 2022, 28(2): 139-149.
[2] Huang R Q, Liao W P, Yan M X, Liu S, Li Y M, Kang X W. P-doped Ru-Pt alloy catalyst towards high performance alkaline hydrogen evolution reaction[J]. J. Electrochem., 2022, 27(0): 1-14.
[3] Zheng H Y, Huang X B, Gao H Y, Lu G L, Dong W J, Wang G. Cu@Cu3P core-shell nanowires attached to nickel foam as high-performance electrocatalysts for the hydrogen evolution reaction[J]. Chem. Eur. J., 2019, 25(4): 1083-1089.
[4] Jin X, Li J, Cui Y T, Liu X Y, Zhang X L, Yao J L, Liu B D. Cu3P-Ni2P hybrid hexagonal nanosheet arrays for efficient hydrogen evolution reaction in alkaline solution[J]. Inorg. Chem., 2019, 58(17): 11630-11635.
[5] Wang Z, Du H T, Liu Z, Wang H, Asiri A M, Sun X P. Interface engineering of a CeO2-Cu3P nanoarray for efficient alkaline hydrogen evolution[J]. Nanoscale, 2018, 10(5): 2213-2217.
[6] Han A, Zhang H Y, Yuan R H, Ji H X, Du P W. Crystalline copper phosphide nanosheets as an efficient Janus catalyst for overall water splitting[J]. ACS Appl. Mater. Interfaces, 2017, 9(3): 2240-2248.
[7] Swearer D F, Zhao H Q, Zhou L N, Zhang C, Robatjazi H, Martirez J M P, Krauter C M, Yazdi S, McClain M J, Ringe E, Carter E A, Nordlander P, Halas N J. Heterometallic antenna-reactor complexes for photocatalysis[J]. Proc. Natl. Acad. Sci. U.S.A., 2016, 113(32): 8916-8920.
[8] Li W D, Zhao Y X, Liu Y, Sun M Z, Waterhouse G I N, Huang B L, Zhang K, Zhang T R, Lu S Y. Exploiting Ru-induced lattice strain in coru nanoalloys for robust bifunctional hydrogen production[J]. Angew. Chem. Int. Ed., 2021, 60(6): 3290-3298.
[9] Wang Q J, Zhang Z Y, Zhao X Z, Xiao J W, Manoj D, Wei F F, Xiao F, Wang H R, Wang S. MOF-derived copper nitride/phosphide heterostructure coated by multidoped carbon as electrocatalyst for efficient water splitting and neutral-pH hydrogen evolution reaction[J]. ChemEle-ctroChem, 2020, 7(1): 289-298.
[10] Wei S T, Qi K, Jin Z, Cao J S, Zheng W T, Chen H, Cui X Q. One-step synthesis of a self-supported copper phosphide nanobush for overall water splitting[J]. ACS Omega, 2016, 1(6): 1367-1373.
[11] Liu L B, Ge L, Sun Y Y, Jiang B B, Cheng Y F, Xu L, Liao F, Kang Z H, Shao M W. Quasi-layer CO2P-polarized Cu3P nanocomposites with enhanced intrinsic interfacial charge transfer for efficient overall water splitting[J]. Nanoscale, 2019, 11(13): 6394-6400.
[12] Kibsgaard J, Tsai C, Chan K, Benck J D, N?rskov J K, Abild-Pedersen F, Jaramillo T F. Designing an improved transition metal phosphide catalyst for hydrogen evolution using experimental and theoretical trends[J]. Energy Environ. Sci., 2015, 8(10): 3022-3029.
[13] Pawar S M, Pawar B S, Hou B, Kim J, Ahmed A T A, Chavan H S, Jo Y, Cho S, Inamdar A I, Gunjakar J L, Kim H, Cha S, Im H. Self-assembled two-dimensional copper oxide nanosheet bundles as an efficient oxygen evolution reaction (OER) electrocatalyst for water splitting applications[J]. J. Mater. Chem. A, 2017, 5(25): 12747-12751.
[14] Li Y, Luo Z Y, Ge J J, Liu C P, Xing W. Research pro-gress in hydrogen evolution low noble/non-precious metal catalysts of water electrolysis[J]. J. Electrochem., 2018, 24(6): 572-588.
[15] Xu F, Lu J, Luo L L, Yu C, Tang Z, Abbo H S, Titinchi S J J, Zhu J L, Shen P K, Yin S B. Cu2S-Cu3P nanowire arrays self-supported on copper foam as boosting electrocatalysts for hydrogen evolution[J]. Energy Technol., 2019, 7(4): 1800993.
[16] Xu T Y, Wei S T, Zhang X L, Zhang D T, Xu Y C, Cui X Q. Sulfur-doped Cu3P|S electrocatalyst for hydrogen evolution reaction[J]. Mater. Res. Express., 2019, 6(7): 075501.
[17] Jiang E J, Jiang J H, Huang G, Pan Z Y, Chen X Y, Wang G F, Ma S J, Zhu J L, Shen P K. Porous nanosheets of Cu3P@N,P Co-doped carbon hosted on copper foam as an efficient and ultrastable pH-universal hydrogen evolution electrocatalyst[J]. Sustain. Energy Fuels, 2021, 5(9): 2451-2457.
[18] Tian J Q, Liu Q, Cheng N Y, Asiri A M, Sun X P. Self-supported Cu3P nanowire arrays as an integrated high-per-formance three-dimensional cathode for generating hydrogen from water[J]. Angew. Chem. Int. Ed., 2014, 53(36): 9577-9581.
[19] Luo M, Cai J Y, Zou J S, Jiang Z, Wang G M, Kang X W. Promoted alkaline hydrogen evolution by an N-doped Pt-Ru single atom alloy[J]. J. Mater. Chem. A, 2021, 9(26): 14941-14947.
[20] Wang P T, Zhang X, Zhang J, Wan S, Guo S J, Lu G, Yao J L, Huang X Q. Precise tuning in platinum-nickel/nickel sulfide interface nanowires for synergistic hydrogen evolution catalysis[J]. Nat. Commun., 2017, 8: 14580.
[21] Xie Y F, Cai J Y, Wu Y S, Zang Y P, Zheng X S, Ye J, Cui P X, Niu S W, Liu Y, Zhu J F, Liu X J, Wang G M, Qian Y T. Boosting water dissociation kinetics on Pt-Ni nanowires by N-induced orbital tuning[J]. Adv. Mater., 2019, 31(16): 1807780.
[22] Mao J J, He C T, Pei J J, Chen W X, He D S, He Y Q, Zhuang Z B, Chen C, Peng Q, Wang D S, Li Y D. Accelerating water dissociation kinetics by isolating cobalt atoms into ruthenium lattice[J]. Nat. Commun., 2018, 9: 4958.
[23] Chang Q B, Ma J W, Zhu Y Z, Li Z, Xu D Y, Duan X Z, Peng W C, Li Y, Zhang G L, Zhang F B, Fan X B. Controllable synthesis of ruthenium phosphides (RuP and RuP2) for pH-universal hydrogen evolution reaction[J]. ACS Sustain. Chem. Eng., 2018, 6(5): 6388-6394.
[24] Yao M Q, Wang B J, Sun B L, Luo L F, Chen Y J, Wang J W, Wang N, Komarneni S, Niu X B, Hu W C. Rational design of self-supported Cu@WC core-shell mesoporous nanowires for pH-universal hydrogen evolution reaction[J]. Appl. Catal. B, 2021, 280: 119451.
[25] Dai D M, Wei B, Li Y, Ma X, Liang S, Wang S, Xu L L. Self-supported hierarchical Fe(PO3)2@Cu3P nanotube arrays for efficient hydrogen evolution in alkaline media[J]. J. Alloys Compd., 2020, 820: 153185.
[26] Li Y P, Zhang J H, Liu Y, Qian Q Z, Li Z Y, Zhu Y, Zhang G Q. Partially exposed RuP2 surface in hybrid structure endows its bifunctionality for hydrazine oxidation and hydrogen evolution catalysis[J]. Sci. Adv., 2020, 6(44): eabb4197.
[27] Pu Z H, Amiinu I S, Kou Z K, Li W Q, Mu S C. RuP2-basedcatalysts with platinum-like activity and higher durability for the hydrogen evolution reaction at all pH values[J]. Angew. Chem. Int. Ed, 2017, 56(38): 11559-11564.
[28] Yu L P, Zhang J, Dang Y L, He J K, Tobin Z, Kerns P, Dou Y H, Jiang Y, He Y H, Suib S L. In situ growth of Ni2P-Cu3P bimetallic phosphide with bicontinuous structure on self-supported NiCuC substrate as an efficient hydrogen evolution reaction electrocatalyst[J]. ACS Catal., 2019, 9(8): 6919-6928.
[29] Ma X X, Chang Y Q, Zhang Z, Tang J L. Forest-like NiCoP@Cu3P supported on copper foam as bifunctional electrocatalyst for hydrogen and oxygen evolution reactions[J]. J. Mater. Chem. A, 2017, 6: 2100-2106.
[30] Wang H, Zhou T T, Li P L, Cao Z, Xi W, Zhao Y F, Ding Y. Self-supported hierarchical nanostructured NiFe-LDH and Cu3P weaving mesh electrodes for efficient water splitting[J]. ACS Sustain. Chem. Eng., 2017, 6(1): 380-388.
[31] Hai X, Xi S B, Mitchell S, Harrath K, Xu H M, Akl D F, Kong D B, Li J, Li Z J, Sun T, Yang H M, Cui Y G, Su C L, Zhao X X, Li J, Pérez-Ramírez J, Lu J. Scalable two-step annealing method for preparing ultra-high-density single-atom catalyst libraries[J]. Nat. Nanotechnol., 2022, 17(2): 174-181.
[32] Chen Z, Kronawitter C X, Koel B E. Facet-dependent activity and stability of Co3O4 nanocrystals towards the oxygen evolution reaction[J]. Phys. Chem. Chem. Phys., 2015, 17(43): 29387-29393.
[33] Wan R D, Luo M, Wen J B, Liu S L, Kang X W, Tian Y. Pt-Co single atom alloy catalysts: Accelerated water dissociation and hydrogen evolution by strain regulation[J]. J. Energy Chem., 2022, 69: 44-53.
[34] Wei Z Q, Hu X, Ning S L, Kang X W, Chen S W. Supported heterostructured MoC/Mo2C nanoribbons and nanoflowers as highly active electrocatalysts for hydrogen evolution reaction[J]. ACS Sustain. Chem. Eng., 2019, 7(9): 8458-8465.
文章导航

/