钠离子电池硬碳基负极材料的研究进展
收稿日期: 2022-04-30
修回日期: 2022-06-03
录用日期: 2022-06-13
网络出版日期: 2022-06-13
基金资助
国家自然科学基金项目(51774251)
Research Progress and Performance Improvement Strategies of Hard Carbon Anode Materials for Sodium-Ion Batteries
Received date: 2022-04-30
Revised date: 2022-06-03
Accepted date: 2022-06-13
Online published: 2022-06-13
殷秀平 , 赵玉峰 , 张久俊 . 钠离子电池硬碳基负极材料的研究进展[J]. 电化学, 2023 , 29(10) : 2204301 . DOI: 10.13208/j.electrochem.2204301
This paper systematically summarizes the research progress of hard carbon anode materials in sodium ion batteries (SIBs) and the development of the corresponding sodium storage mechanism in recent years, and reviews the performance improvement strategies of hard carbon materials from the aspects of structural design and electrolyte regulation. The effects of the selection of precursors, carbonization temperature, pretreatment, pore formers, heteroatom doping, material compounding, electrolyte regulation and pre-sodiumization on the sodium storage performance of hard carbon anode materials are briefly described. This paper provides new insights into the design, synthesis and electrolyte matching of high-performance and low-cost hard carbon materials, and looks forward to the direction of further research and development of SIBs hard carbon anode materials in the future.
[1] | Chen D Q, Zhang W, Luo K Y, Song Y, Zhong Y J, Liu Y X, Wang G K, Zhong B H, Wu Z G, Guo X D. Hard carbon for sodium storage: mechanism and optimization strategies toward commercialization[J]. Energy Environ. Sci., 2021, 14 (4): 2244-2262. |
[2] | Zhang M H, Li Y, Wu F, Bai Y, Wu C. Boost sodium-ion batteries to commercialization: strategies to enhance initial coulombic efficiency of hard carbon anode[J]. Nano Energy, 2021, 82: 105738. |
[3] | Zhao L F, Hu Z, Lai W H, Tao Y, Peng J, Miao Z C, Wang Y X, Chou S L, Liu H K, Dou S X. Hard carbon anodes: fundamental understanding and commercial perspectives for Na-ion batteries beyond Li-ion and K-ion counterparts[J]. Adv. Energy Mater., 2021, 11(1): 2002704. |
[4] | Dou X W, Hasa I, Saurel D, Vaalma C, Wu L M, Buchholz D, Bresser D, Komaba S, Passerini S. Hard carbons for sodium-ion batteries: structure, analysis, sustainability, and electrochemistry[J]. Mater. Today, 2019, 23: 87-104. |
[5] | Oberlin A, Terriere G. Graphitization studies of anthracites by high resolution electron microscopy[J]. Carbon, 1975, 13(5): 367-376. |
[6] | Marsh H, Reinoso F R. Activated carbon[M]. Amsterdam: Elsevier, 2006. |
[7] | Qiu S, Xiao L F, Sushko M L, Han K S, Shao Y Y, Yan M Y, Liang X M, Mai L Q, Feng J W, Cao Y L, Ai X P, Yang H X, Liu J. Manipulating adsorption-insertion mechanisms in nanostructured carbon materials for high-efficiency sodium ion storage[J]. Adv. Energy Mater., 2017, 7(17): 1700403. |
[8] | Sun D, Luo B, Wang H Y, Tang Y G, Ji X B, Wang L Z. Engineering the trap effect of residual oxygen atoms and defects in hard carbon anode towards high initial Coulombic efficiency[J]. Nano Energy, 2019, 64: 103937. |
[9] | Sun N, Guan Z R X, Liu Y W, Cao Y L, Zhu Q Z, Liu H, Wang Z X, Zhang P, Xu B. Extended “adsorption-insertion” model: a new insight into the sodium storage mechanism of hard carbons[J]. Adv. Energy Mater., 2019, 9(32): 1901351. |
[10] | Stevens D A, Dahn J R. High capacity anode materials for rechargeable sodium-ion batteries[J]. J. Electrochem. Soc., 2000, 147(4): 1271. |
[11] | Bommier C, Surta T W, Dolgos M, Ji X L. New mechanistic insights on Na-ion storage in nongraphitizable carbon[J]. Nano Lett., 2015, 15 (9): 5888-5892. |
[12] | Ding J, Wang H L, Li Z, Kohandehghan A, Cui K, Xu Z W, Zahiri B, Tan X H, Lotfabad E M, Olsen B C, Mitlin D. Carbon nanosheet frameworks derived from peat moss as high performance sodium ion battery anodes[J]. ACS Nano, 2013, 7 (12): 11004-11015. |
[13] | Lotfabad E M, Ding J, Cui K, Kohandehghan A, Kalisvaart W P, Hazelton M, Mitlin D. High-density sodium and lithium ion battery anodes from banana peels[J]. ACS Nano, 2014, 8(7): 7115-7129. |
[14] | Yun Y S, Park K Y, Lee B, Cho S Y, Park Y U, Hong S J, Kim B H, Gwon H, Kim H, Lee S, Park Y W, Jin H J, Kang K. Sodium-ion storage in pyroprotein-based carbon nanoplates[J]. Adv. Mater., 2015, 27 (43): 6914-6921. |
[15] | Cao Y L, Xiao L F, Sushko M L, Wang W, Schwenzer B, Xiao J, Nie Z M, Saraf L V, Yang Z G, Liu J. Sodium ion insertion in hollow carbon nanowires for battery applications[J]. Nano Lett., 2012, 12 (7): 3783-3787. |
[16] | Yang H, Xu R, Yu Y. A facile strategy toward sodium-ion batteries with ultra-long cycle life and high initial coulombic efficiency: free-standing porous carbon nanofiber film derived from bacterial cellulose[J]. Energy Storage Mater., 2019, 22: 105-112. |
[17] | Li Z F, Bommier C, Sen Chong Z, Jian Z L, Surta T W, Wang X F, Xing Z Y, Neuefeind J C, Stickle W F, Dolgos M, Greaney P A, Ji X L. Mechanism of Na-ion storage in hard carbon anodes revealed by heteroatom doping[J]. Adv. Energy Mater., 2017, 7(18): 1602894. |
[18] | Lu H Y, Ai F X, Jia Y L, Tang C Y, Zhang X H, Huang Y H, Yang H X, Cao Y L. Exploring sodium-ion storage mechanism in hard carbons with different microstructure prepared by ball-milling method[J]. Small, 2018, 14(39): 1802694. |
[19] | Sun F, Wang H, Qu Z B, Wang K F, Wang L J, Gao J H, Gao J M, Liu S Q, Lu Y F. Carboxyl-dominant oxygen rich carbon for improved sodium ion storage: synergistic enhancement of adsorption and intercalation mechanisms[J]. Adv. Energy Mater., 2021, 11(1): 2002981. |
[20] | Li Y M, Hu Y S, Titirici M M, Chen L Q, Huang X J. Hard carbon microtubes made from renewable cotton as high-performance anode material for sodium-ion batteries[J]. Adv. Energy Mater., 2016, 6(18): 1600659. |
[21] | Bin D S, Li Y M, Sun Y G, Duan S Y, Lu Y X, Ma J M, Cao A M, Hu Y S, Wan L J. Structural engineering of multishelled hollow carbon nanostructures for high-performance Na-ion battery anode[J]. Adv. Energy Mater., 2018, 8(26): 1800855. |
[22] | Au H, Alptekin H, Jensen A C S, Olsson E, O'Keefe C A, Smith T, Crespo-Ribadeneyra M, Headen T F, Grey C P, Cai Q, Drew A J, Titirici M M. A revised mechanistic model for sodium insertion in hard carbons[J]. Energy Environ. Sci., 2020, 13(10): 3469-3479. |
[23] | Xia J L, Yan D, Guo L P, Dong X L, Li W C, Lu A H. Hard carbon nanosheets with uniform ultramicropores and accessible functional groups showing high realistic capacity and superior rate performance for sodium-ion storage[J]. Adv. Mater., 2020, 32(21): 2000447. |
[24] | Zhang S W, Lv W, Luo C, You C H, Zhang J, Pan Z Z, Kang F Y, Yang Q H. Commercial carbon molecular sieves as a high performance anode for sodium-ion batteries[J]. Energy Storage Mater., 2016, 3: 18-23. |
[25] | Morikawa Y, Nishimura S, Hashimoto R, Ohnuma M, Yamada A. Mechanism of sodium storage in hard carbon: an X-ray scattering analysis[J]. Adv. Energy Mater., 2020, 10(3): 1903176. |
[26] | Alvin S, Yoon D, Chandra C, Cahyadi H S, Park J H, Chang W, Chung K Y, Kim J. Revealing sodium ion storage mechanism in hard carbon[J]. Carbon, 2019, 145: 67-81. |
[27] | Xiao L F, Cao Y L, Henderson W A, Sushko M L, Shao Y Y, Xiao J, Wang W, Engelhard M H, Nie Z M, Liu J. Hard carbon nanoparticles as high-capacity, high-stability anodic materials for Na-ion batteries[J]. Nano Energy, 2016, 19: 279-288. |
[28] | Gotoh K, Ishikawa T, Shimadzu S, Yabuuchi N, Komaba S, Takeda K, Goto A, Deguchi K, Ohki S, Hashi K, Shimizu T, Ishida H. NMR study for electrochemically inserted Na in hard carbon electrode of sodium ion battery[J]. J. Power Sources, 2013, 225: 137-140. |
[29] | Wahid M, Gawli Y, Puthusseri D, Kumar A, Shelke M V, Ogale S. Nutty carbon: morphology replicating hard carbon from walnut shell for Na ion battery anode[J]. ACS Omega, 2017, 2(7): 3601-3609. |
[30] | Li H B, Shen F, Luo W, Dai J Q, Han X G, Chen Y N, Yao Y G, Zhu H L, Fu K, Hitz E, Hu L B. Carbonized-leaf membrane with anisotropic surfaces for sodium-ion battery[J]. ACS Appl. Mater. Interfaces, 2016, 8(3): 2204-2210. |
[31] | Zhu Z Y, Liang F, Zhou Z R, Zeng X Y, Wang D, Dong P, Zhao J B, Sun S G, Zhang Y J, Li X. Expanded biomass-derived hard carbon with ultra-stable performance in sodium-ion batteries[J]. J. Mater. Chem. A, 2018, 6(4): 1513-1522. |
[32] | Wang P Z, Zhu X S, Wang Q Q, Xu X, Zhou X S, Bao J C. Kelp-derived hard carbons as advanced anode materials for sodium-ion batteries[J]. J. Mater. Chem. A, 2017, 5(12): 5761-5769. |
[33] | Dou X W, Hasa I, Hekmatfar M, Diemant T, Behm R J, Buchholz D, Passerini S. Pectin, hemicellulose, or lignin? impact of the biowaste source on the performance of hard carbons for sodium-ion batteries[J]. ChemSusChem, 2017, 10(12): 2668-2676. |
[34] | Gibertini E, Liberale F, Dossi C, Binda G, Mattioli B, Bettinetti R, Maspero A, Fiore M, Ruffo R, Magagnin L. Algae-derived hard carbon anodes for Na-ion batteries[J]. J. Appl. Electrochem., 2021, 51(12): 1665-1673. |
[35] | Zhang Y J, Li X, Dong P, Wu G, Xiao J, Zeng X Y, Zhang Y J, Sun X L. Honeycomb-like hard carbon derived from pine pollen as high-performance anode material for sodium-ion batteries[J]. ACS Appl. Mater. Interfaces, 2018, 10(49): 42796-42803. |
[36] | Cao L Y, Hui W L, Xu Z W, Huang J F, Zheng P, Li J Y, Sun Q Q. Rape seed shuck derived-lamellar hard carbon as anodes for sodium-ion batteries[J]. J. Alloys Compd., 2017, 695: 632-637. |
[37] | Liu P, Li Y M, Hu Y S, Li H, Chen L Q, Huang X J. A waste biomass derived hard carbon as a high-performance anode material for sodium-ion batteries[J]. J. Mater. Chem. A, 2016, 4(34): 13046-13052. |
[38] | Damodar D, Ghosh S, Rani M U, Martha S K, Deshpande A S. Hard carbon derived from sepals of Palmyra palm fruit calyx as an anode for sodium-ion batteries[J]. J. Power Sources, 2019, 438: 227008. |
[39] | Zhang B A, Ghimbeu C M, Laberty C, Vix-Guterl C, Tarascon J M. Correlation between microstructure and Na storage behavior in hard carbon[J]. Adv. Energy Mater., 2016, 6(1): 1501588. |
[40] | Chen T Q, Pan L K, Lu T, Fu C L, Chua D H C, Sun Z. Fast synthesis of carbon microspheres via a microwave-assisted reaction for sodium ion batteries[J]. J. Mater. Chem. A, 2014, 2(5): 1263-1267. |
[41] | Zhu J D, Chen C, Lu Y, Ge Y Q, Jiang H, Fu K, Zhang X W. Nitrogen-doped carbon nanofibers derived from polyacrylonitrile for use as anode material in sodium-ion batteries[J]. Carbon, 2015, 94: 189-195. |
[42] | Zhang N, Liu Q, Chen W L, Wan M, Li X C, Wang L L, Xue L H, Zhang W X. High capacity hard carbon derived from lotus stem as anode for sodium ion batteries[J]. J. Power Sources, 2018, 378: 331-337. |
[43] | Yu Z L, Xin S, You Y, Yu L, Lin Y, Xu D W, Qiao C, Huang Z H, Yang N, Yu S H, Goodenough J B. Ion-catalyzed synthesis of microporous hard carbon embedded with expanded nanographite for enhanced lithium/sodium storage[J]. J. Am. Chem. Soc., 2016, 138(45): 14915-14922. |
[44] | Huang S F, Li Z P, Wang B, Zhang J J, Peng Z Q, Qi R J, Wang J, Zhao Y F. N-doping and defective nanographitic domain coupled hard carbon nanoshells for high performance lithium/sodium storage[J]. Adv. Funct. Mater., 2018, 28(10): 1706294. |
[45] | Zhao X, Ding Y, Xu Q, Yu X, Liu Y, Shen H. Low-temperature growth of hard carbon with graphite crystal for sodium-ion storage with high initial coulombic efficiency: a general method[J]. Adv. Energy Mater., 2019, 9(10): 1803648. |
[46] | Lin X Y, Liu Y Z, Tan H, Zhang B. Advanced lignin-derived hard carbon for Na-ion batteries and a comparison with Li and K ion storage[J]. Carbon, 2020, 157: 316-323. |
[47] | Hou B H, Wang Y Y, Ning Q L, Li W H, Xi X T, Yang X, Liang H J, Feng X, Wu X L. Self-supporting, flexible, additive-free, and scalable hard carbon paper self-interwoven by 1D microbelts: superb room/low-temperature sodium storage and working mechanism[J]. Adv. Mater., 2019, 31(40): 1903125. |
[48] | Yamamoto H, Muratsubaki S, Kubota K, Fukunishi M, Watanabe H, Kim J, Komaba S. Synthesizing higher-capacity hard-carbons from cellulose for Na- and K-ion batteries[J]. J. Mater. Chem. A, 2018, 6(35): 16844-16848. |
[49] | Lu Y X, Zhao C L, Qi X G, Qi Y R, Li H, Huang X J, Chen L Q, Hu Y S. Pre-oxidation-tuned microstructures of carbon anodes derived from pitch for enhancing Na storage performance[J]. Adv. Energy Mater., 2018, 8(27): 1800108. |
[50] | Li Y Q, Lu Y X, Meng Q S, Jensen A C S, Zhang Q Q, Zhang Q H, Tong Y X, Qi Y R, Gu L, Titirici M M, Hu Y S. Regulating pore structure of hierarchical porous waste cork-derived hard carbon anode for enhanced Na storage performance[J]. Adv. Energy Mater., 2019, 9(48): 1902852. |
[51] | Meng Q S, Lu Y X, Ding F X, Zhang Q Q, Chen L Q, Hu Y S. Tuning the closed pore structure of hard carbons with the highest Na storage capacity[J]. ACS Energy Lett., 2019, 4(11): 2608-2612. |
[52] | Kamiyama A, Kubota K, Nakano T, Fujimura S, Shiraishi S, Tsukada H, Komaba S. High-capacity hard carbon synthesized from macroporous phenolic resin for sodium-ion and potassium-ion battery[J]. ACS Appl. Energy Mater., 2020, 3(1): 135-140. |
[53] | Kamiyama A, Kubota K, Igarashi D, Youn Y, Tateyama Y, Ando H, Gotoh K, Komaba S. MgO-template synthesis of extremely high capacity hard carbon for Na-ion battery[J]. Angew. Chem. Int. Edit., 2021, 60(10): 5114-5120. |
[54] | Li Q, Liu X S, Tao Y, Huang J X, Zhang J, Yang C P, Zhang Y B, Zhang S W, Jia Y R, Lin Q W, Xiang Y X, Cheng J, Lv W, Kang F Y, Yang Y, Yang Q H. Sieving carbons promise practical anodes with extensible low-potential plateaus for sodium batteries[J]. Natl. Sci. Rev., 2022, 9(8): DOI: 10.1093/nsr/nwac084. |
[55] | Shao Y Y, Xiao J, Wang W, Engelhard M, Chen X L, Nie Z M, Gu M, Saraf L V, Exarhos G, Zhang J G, Liu J. Surface-driven sodium ion energy storage in nanocellular carbon foams[J]. Nano Lett., 2013, 13(8): 3909-3914. |
[56] | Wu F, Zhang M H, Bai Y, Wang X R, Dong R Q, Wu C. Lotus seedpod-derived hard carbon with hierarchical porous structure as stable anode for sodium-ion batteries[J]. ACS Appl. Mater. Interfaces, 2019, 11(13): 12554-12561. |
[57] | Wu F, Dong R Q, Bai Y, Li Y, Chen G H, Wang Z H, Wu C. Phosphorus-doped hard carbon nanofibers prepared by electrospinning as an anode in sodium-ion batteries[J]. ACS Appl. Mater. Interfaces, 2018, 10(25): 21335-21342. |
[58] | Li Y, Yuan Y F, Bai Y, Liu Y C, Wang Z H, Li L M, Wu F, Amine K, Wu C, Lu J. Insights into the Na+ storage mechanism of phosphorus-functionalized hard carbon as ultrahigh capacity anodes[J]. Adv. Energy Mater., 2018, 8(18): 1702781. |
[59] | Hankel M, Ye D L, Wang L Z, Searles D J. Lithium and sodium storage on graphitic carbon nitride[J]. J. Phys. Chem. C, 2015, 119(38): 21921-21927. |
[60] | Chen C, Lu Y, Ge Y Q, Zhu J D, Jiang H, Li Y Q, Hu Y, Zhang X W. Synthesis of nitrogen-doped electrospun carbon nanofibers as anode material for high-performance sodium-ion batteries[J]. Energy Technol., 2016, 4(11): 1440-1449. |
[61] | Sun X Z, Wang C L, Gong Y, Gu L, Chen Q W, Yu Y. A flexible sulfur-enriched nitrogen doped multichannel hollow carbon nanofibers film for high performance sodium storage[J]. Small, 2018, 14(35): 1802218. |
[62] | Yang J Q, Zhou X L, Wu D H, Zhao X D, Zhou Z. S-doped N-rich carbon nanosheets with expanded interlayer distance as anode materials for sodium-ion batteries[J]. Adv. Mater., 2017, 29(6): 1604108. |
[63] | Guo M Q, Huang J Q, Kong X Y, Peng H J, Shut H, Qian F Y, Zhu L, Zhu W C, Zhang Q. Hydrothermal synthesis of porous phosphorus-doped carbon nanotubes and their use in the oxygen reduction reaction and lithium-sulfur batteries[J]. New Carbon Mater., 2016, 31(3): 352-362. |
[64] | Xie F, Xu Z, Jensen A C S, Au H, Lu Y X, Araullo-Peters V, Drew A J, Hu Y S, Titirici M M. Hard-soft carbon composite anodes with synergistic sodium storage performance[J]. Adv. Funct. Mater., 2019, 29(24): 1901072. |
[65] | Suo L Y, Zhu J H, Shen X Y, Wang Y Z, Han X, Chen Z Q, Li Y, Liu Y R, Wang D, Ma Y W. Hard carbon spheres interconnected by carbon nanotubes as high-performance anodes for sodium-ion batteries[J]. Carbon, 2019, 151: 1-9. |
[66] | Sun N, Guan Y B, Liu Y T, Zhu Q Z, Shen J R, Liu H, Zhou S Q, Xu B. Facile synthesis of free-standing, flexible hard carbon anode for high-performance sodium ion batteries using graphene as a multi-functional binder[J]. Carbon, 2018, 137: 475-483. |
[67] | Huang Y X, Zhao L Z, Li L, Xie M, Wu F, Chen R J. Electrolytes and electrolyte/electrode interfaces in sodium-ion batteries: from scientific research to practical application[J]. Adv. Mater., 2019, 31(21): 1808393. |
[68] | Ponrouch A, Marchante E, Courty M, Tarascon J M, Palacín M R. In search of an optimized electrolyte for Na-ion batteries[J]. Energy Environ. Sci., 2012, 5(9): 8572-8583. |
[69] | Li K K, Zhang J, Lin D M, Wang D W, Li B H, Lv W, Sun S, He Y B, Kang F Y, Yang Q H, Zhou L M, Zhang T Y. Evolution of the electrochemical interface in sodium ion batteries with ether electrolytes[J]. Nat. Commun., 2019, 10(1): 725. |
[70] | Dong R Q, Zheng L M, Bai Y, Ni Q, Li Y, Wu F, Ren H X, Wu C. Elucidating the mechanism of fast Na storage kinetics in ether electrolytes for hard carbon anodes[J]. Adv. Mater., 2021, 33(36): 2008810. |
[71] | Kumar H, Detsi E, Abraham D P, Shenoy V B. Fundamental mechanisms of solvent decomposition involved in solid-electrolyte interphase formation in sodium ion batteries[J]. Chem. Mater., 2016, 28(24): 8930-8941. |
[72] | Komaba S, Ishikawa T, Yabuuchi N, Murata W, Ito A, Ohsawa Y. Fluorinated ethylene carbonate as electrolyte additive for rechargeable Na batteries[J]. ACS Appl. Mater. Interfaces, 2011, 3(11): 4165-4168. |
[73] | Dahbi M, Nakano T, Yabuuchi N, Fujimura S, Chihara K, Kubota K, Son J Y, Cui Y T, Oji H, Komaba S. Effect of hexafluorophosphate and fluoroethylene carbonate on electrochemical performance and the surface layer of hard carbon for sodium-ion batteries[J]. ChemElectroChem, 2016, 3 (11): 1856-1867. |
[74] | Chen C, Wu M Q, Liu J H, Xu Z Q, Zaghib K, Wang Y S. Effects of ester-based electrolyte composition and salt concentration on the Na-storage stability of hard carbon anodes[J]. J. Power Sources, 2020, 471: 228455. |
[75] | Eshetu G G, Diemant T, Hekmatfar M, Grugeon S, Behm R J, Laruelle S, Armand M, Passerini S. Impact of the electrolyte salt anion on the solid electrolyte interphase formation in sodium ion batteries[J]. Nano Energy, 2019, 55: 327-340. |
[76] | Patra J, Huang H T, Xue W J, Wang C, Helal A S, Li J, Chang J K. Moderately concentrated electrolyte improves solid-electrolyte interphase and sodium storage performance of hard carbon[J]. Energy Storage Mater., 2019, 16: 146-154. |
[77] | Takada K, Yamada Y, Watanabe E, Wang J H, Sodeyama K, Tateyama Y, Hirata K, Kawase T, Yamada A. Unusual passivation ability of superconcentrated electrolytes toward hard carbon negative electrodes in sodium-ion batteries[J]. ACS Appl. Mater. Interfaces, 2017, 9(39): 33802-33809. |
[78] | Li Y Q, Yang Y, Lu Y X, Zhou Q, Qi X G, Meng Q S, Rong X H, Chen L Q, Hu Y S. Ultralow-concentration electrolyte for Na-ion batteries[J]. ACS Energy Lett., 2020, 5(4): 1156-1158. |
[79] | Tang J L, Kye D K, Pol V G. Ultrasound-assisted synthesis of sodium powder as electrode additive to improve cycling performance of sodium-ion batteries[J]. J. Power Sources, 2018, 396: 476-482. |
[80] | Moeez I, Jung H G, Lim H D, Chung K Y. Presodiation strategies and their effect on electrode-electrolyte interphases for high-performance electrodes for sodium-ion batteries[J]. ACS Appl. Mater. Interfaces, 2019, 11(44): 41394-41401. |
[81] | Liu X X, Tan Y C, Liu T C, Wang W Y, Li C H, Lu J, Sun Y M. A simple electrode-level chemical presodiation route by solution spraying to improve the energy density of sodium-ion batteries[J]. Adv. Funct. Mater., 2019, 29(50): 1903795. |
[82] | Liu M C, Zhang J Y, Guo S H, Wang B, Shen Y F, Ai X P, Yang H X, Qian J F. Chemically presodiated hard carbon anodes with enhanced initial coulombic efficiencies for high-energy sodium ion batteries[J]. ACS Appl. Mater. Interfaces, 2020, 12(15): 17620-17627. |
[83] | Niu Y B, Guo Y J, Yin Y X, Zhang S Y, Wang T, Wang P, Xin S, Guo Y G. High-efficiency cathode sodium compensation for sodium-ion batteries[J]. Adv. Mater., 2020, 32(33): 2001419. |
[84] | Sun C K, Zhang X, Li C, Wang K, Sun X Z, Liu F Y, Wu Z S, Ma Y W. A safe, low-cost and high-efficiency presodiation strategy for pouch-type sodium-ion capacitors with high energy density[J]. J. Energy Chem., 2022, 64: 442-450. |
[85] | Sun C K, Zhang X, Li C, Wang K, Sun X Z, Ma Y W. A presodiation strategy with high efficiency by utilizing low-price and eco-friendly Na2CO3 as the sacrificial salt towards high-performance pouch sodium-ion capacitors[J]. J. Power Sources, 2021, 515: 230628. |
[86] | Arnaiz M, Shanmukaraj D, Carriazo D, Bhattacharjya D, Villaverde A, Armand M, Ajuria J. A transversal low-cost pre-metallation strategy enabling ultrafast and stable metal ion capacitor technologies[J]. Energy Environ. Sci., 2020, 13(8): 2441-2449. |
/
〈 |
|
〉 |