欢迎访问《电化学(中英文)》期刊官方网站,今天是
论文

LiF-Sn复合修饰层改性石榴石/锂金属界面

  • 杨武 ,
  • 郑雪凡 ,
  • 武玉琪 ,
  • 汤士军 ,
  • 龚正良
展开
  • 厦门大学能源学院,福建 厦门 361005
*龚正良,Tel: (86-592)2880703,E-mail: zlgong@xmu.edu.cn

收稿日期: 2022-04-07

  修回日期: 2022-05-19

  录用日期: 2022-05-25

  网络出版日期: 2022-06-06

基金资助

国家自然科学基金项目(21875196);国家自然科学基金项目(21935009);福建省引导性计划项目(2019H0003);厦门大学大学生创新创业训练计划项目(202110384606)

LiF-Sn Composite Modification Layer to Modify Garnet/Lithium Metal Interface

  • Wu Yang ,
  • Xue-Fan Zheng ,
  • Yu-Qi Wu ,
  • Shi-Jun Tang ,
  • Zheng-Liang Gong
Expand
  • College of Energy, Xiamen University, Xiamen 361005, Fujian, China

Received date: 2022-04-07

  Revised date: 2022-05-19

  Accepted date: 2022-05-25

  Online published: 2022-06-06

摘要

锂金属和固态电解质在能量密度和安全性能上有巨大的提升潜力,被视为全固态电池的重要组成部分。具有高锂离子电导率(约10-3 S·cm-1)和高剪切模量(55 GPa)的无机石榴石型固态电解质被认为是理想的固态电解质之一,然而锂枝晶生长的问题依旧难以解决。在本文中,通过在石榴石表面蒸镀一层LiF-Sn复合修饰层,增加石榴石与锂金属的界面浸润性的同时构建了离子快速传输通道,阻挡了电子向石榴石体相的注入,有效地抑制了锂枝晶的生长。界面修饰层的存在使得界面阻抗由969 Ω·cm2降低至3.5 Ω·cm2,对称电池的临界电流密度提升至1.3 mA·cm-2,对称电池在0.4 mA·cm-2的电流密度下稳定循环200 h。

本文引用格式

杨武 , 郑雪凡 , 武玉琪 , 汤士军 , 龚正良 . LiF-Sn复合修饰层改性石榴石/锂金属界面[J]. 电化学, 2023 , 29(11) : 2204071 . DOI: 10.13208/j.electrochem.2204071

Abstract

The growing demands for electric vehicles and consumer electronics,as well as the expanding renewable energy storage market,have promoted extensive research on energy storage technologies with low cost,high energy density and safety. Lithium (Li) metal and solid-state electrolytes are considered as important components for next-generation batteries because of their great potential for improvements in energy density and safety performance. Inorganic garnet-type solid electrolytes with high Li-ion conductivity (about 10-3 S·cm-1) and high shear modulus (55 GPa) are considered to be ideal solid-state electrolytes,however,the issue of Li dendrite growth still obstructs their practical application. Herein,a simple and efficient strategy was developed to suppress the Li dendrite formation in the garnet solid electrolytes. A composite modification layer made of 2 nm LiF and 2 nm Sn thin layers was prepared on the surface of the Li6.5La3Zr1.4Ta0.6O12 (LLZTO) solid electrolyte by the high vacuum evaporation. The composite modification layer combined the advantages of LiF and Sn,which effectively improves the interfacial contact between the Li metal and LLZTO electrolyte,and promotes the uniform Li plating/stripping. The LiF-Sn composite modification layer was deposited on the surface of garnet electrolyte to increase the interfacial wettability between the garnet electrolyte and Li metal,which blocks the injection of electrons into the bulk phase of garnet. The LiF-Sn modification layer effectively enhanced the interfacial contact and inhibited the growth of lithium dendrites. Benefiting from the LiF-Sn interfacial modification,the cross-sectional SEM image shows the intimate contact between the LLZTO-LiF-Sn and the Li metal without any voids. In addition,the interfacial impedance of Li/garnet electrolyte interface decreased from 969 Ω·cm2 to 3.5 Ω·cm2. Meanwhile, the critical current density of the Li symmetric cell increased to 1.3 mA·cm-2, and the Li symmetric cell could be cycled stably for 200 h at a current density of 0.4 mA·cm-2. After disassembling the short-circuited Li/LLZTO/Li cell and reacting the Li metal with alcohol solution,it was found that Li dendrites had grown into the LLZTO pellet. However,the surface of the LiF-Sn-protected LLZTO remained smooth without dark spots from dendrites. The excellent electrochemical performance clearly shows that the LiF-Sn composite modification can effectively inhibit the formation of Li dendrite inside the garnet SSE, proving that this interfacial engineering provides a practical solution for addressing the key challenge of Li/LLZTO interface. At the same time,high vacuum evaporation is a matured industrial technology with large-scale application prospects and can be widely used to solve solid-state interface problems.

参考文献

[1] Kang K, Meng Y S, Bréger J, Grey C P, Ceder G. Electrodes with high power and high capacity for rechargeable lithium batteries[J]. Science, 2006, 311(5763): 977-980.
[2] Cheng X B, Zhang R, Zhao C Z, Zhang Q. Toward safe lithium metal anode in rechargeable batteries: A review[J]. Chem. Rev., 2017, 117(15): 10403-10473.
[3] Xu W, Wang J L, Ding F, Chen X L, Nasybulin E, Zhang Y H, Zhang J G. Lithium metal anodes for rechargeable batteries[J]. Energy Environ. Sci., 2014, 7(2): 513-537.
[4] Kerman K, Luntz A, Viswanathan V, Chiang Y M, Chen Z. Review—practical challenges hindering the development of solid state Li Ion batteries[J]. J. Electrochem. Soc., 2017, 164(7): A1731-A1744.
[5] Yao X Y, Huang B X, Yin J Y, Peng G, Huang Z, Gao C, Liu D, Xu X X. All-solid-state lithium batteries with inorganic solid electrolytes: review of fundamental science[J]. Chin. Phys. B, 2016, 25(1): 018802.
[6] Lv F, Wang Z Y, Shi L Y, Zhu J F, Edstr?m K, Mindemark J, Yuan S. Challenges and development of composite solid-state electrolytes for high-performance lithium ion batteries[J]. J. Power Sources, 2019, 441: 227175.
[7] Monchak M, Hupfer T, Senyshyn A, Boysen H, Chernyshov D, Hansen T, Schell K G, Bucharsky E C, Hoffmann M J, Ehrenberg H. Lithium diffusion pathway in Li1.3Al0.3Ti1.7(PO4)3 (LATP) superionic conductor[J]. Inorg. Chem., 2016, 55: 2941-2945.
[8] Schw?bel A, Hausbrand R, Jaegermann W. Interface reactions between LiPON and lithium studied by in-situ X-ray photoemission[J]. Solid State Ion., 2015, 273: 51-54.
[9] Kamaya N, Homma K, Yamakawa Y, Hirayama M, Kanno R, Yonemura M, Kamiyama T, Kato Y, Hama S, Kawamoto K. A lithium superionic conductor[J]. Nat. Mater., 2011, 10(9): 682-686.
[10] Bron P, Johansson S, Zick K, Schmedt auf der Günne J, Dehnen S, Roling B. Li10SnP2S12: An affordable lithium superionic conductor[J]. J. Am. Chem. Soc., 2013, 135(42): 15694-15697.
[11] Deiseroth H J, Kong S T, Eckert H, Vannahme J, Reiner C, Zai? T, Schlosser M. Li6PS5X: A class of crystalline Li-rich solids with an unusually high Li+ mobility[J]. Angew. Chem., Int. Ed., 2008, 47(4): 755-758.
[12] Fenton D E, Parker J M, Wright P V. Wright complexes of alkali-metal ions with poly(ethylene oxide)[J]. Polymer, 1973, 14: 589-589.
[13] Murugan R, Thangadurai V, Weppner W. Fast lithium ion conduction in garnet-type Li7La3Zr2O12[J]. Angew. Chem., Int. Ed., 2007, 46: 7778-7781.
[14] Samson A J, Hofstetter K, Bag S, Thangadurai V. A bird's-eye view of Li-stuffed garnet-type Li7La3Zr2O12 ceramic electrolytes for advanced all-solid-state Li batteries[J]. Energy Environ. Sci., 2019, 12(10): 2957-2975.
[15] Thangadurai V, Narayana S, Pinzaru D. Garnet-type solid-state fast Li ion conductors for Li batteries: Critical review[J]. Chem. Soc. Rev., 2014, 43(13): 4714-4727.
[16] Li S P, Wang H, Cuthbert J, Liu T, Whitacre J F, Matyjaszewski K. A semiliquid lithium metal anode[J]. Joule, 2019, 3(7): 1637-1646.
[17] Krauskopf T, Hartmann H, Zeier W G, Janek J. Toward a fundamental understanding of the lithium metal anode in solid-state batteries—an electrochemo-mechanical study on the garnet-type solid electrolyte Li6.25Al0.25La3Zr2O12[J]. ACS Appl. Mater. Interfaces, 2019, 11(15): 14463-14477.
[18] Kasemchainan J, Zekoll S, Spencer Jolly D, Ning Z, Hartley G O, Marrow J, Bruce P G. Critical stripping current leads to dendrite formation on plating in lithium anode solid electrolyte cells[J]. Nat. Mater., 2019, 18(10): 1105-1111.
[19] Shao Y J, Wang H, Gong Z L, Wang D W, Zheng B Z, Zhu J P, Lu Y X, Hu Y S, Guo X X, Li H, Huang X J, Yang Y, Nan C W, Chen L Q. Drawing a soft interface: an effective interfacial modification strategy for garnet-type solid-state Li batteries[J]. ACS Energy Lett., 2018, 3(6): 1212-1218.
[20] Deng T, Ji X, Zhao Y, Cao L S, Li S, Hwang S, Luo C, Wang P F, Jia H P, Fan X L, Lu X C, Su D, Sun X L, Wang C S, Zhang J G. Tuning the anode-electrolyte interface chemistry for garnet-based solid-state Li metal batteries[J]. Adv. Mater., 2020, 32(23): e2000030.
[21] Fu J M, Yu P F, Zhang N, Ren G X, Zheng S, Huang W C, Long X H, Li H, Liu X S. In situ formation of a bifunctional interlayer enabled by a conversion reaction to initiatively prevent lithium dendrites in a garnet solid electrolyte[J]. Energy Environ. Sci., 2019, 12(4): 1404-1412.
[22] Taylor N J, Stangeland-Molo S, Haslam C G, Sharafi A, Thompson T, Wang M, Garcia-Mendez R, Sakamoto J. Demonstration of high current densities and extended cycling in the garnet Li7La3Zr2O12 solid electrolyte[J]. J. Power Sources, 2018, 396: 314-318.
[23] Huo H Y, Chen Y, Zhao N, Lin X T, Luo J, Yang X F, Liu Y L, Guo X X, Sun X L. In-situ formed Li2CO3-free garnet/Li interface by rapid acid treatment for dendrite-free solid-state batteries[J]. Nano Energy, 2019, 61:119-125.
[24] Han F D, Westover A S, Yue J, Fan X L, Wang F, Chi M F, Leonard D N, Dudney N J, Wang H, Wang C S. High electronic conductivity as the origin of lithium dendrite formation within solid electrolytes[J]. Nat. Energy, 2019, 4(3): 187-196.
[25] He M H, Cui Z H, Chen C, Li Y Q, Guo X X. Formation of self-limited, stable and conductive interfaces between garnet electrolytes and lithium anodes for reversible lithium cycling in solid-state batteries[J]. J. Mater. Chem. A, 2018, 6(24): 11463-11470.
[26] Tang S J, Chen G W, Ren F C, Wang H C, Yang W, Zheng C X, Gong Z L, Yang Y. Modifying an ultrathin insulating layer to suppress lithium dendrite formation within garnet solid electrolytes[J]. J. Mater. Chem. A, 2021, 9(6): 3576-3583.
[27] Li Y Q, Wang Z, Cao Y, Du F M, Chen C, Cui Z H, Guo X X. W-doped Li7La3Zr2O12ceramic electrolytes for solid state Li-ion batteries[J]. Electrochim. Acta, 2015, 180: 37-42.
[28] Huo H Y, Gao J, Zhao N, Zhang D X, Holmes N G, Li X N, Sun Y P, Fu J M, Li R Y, Guo X X, Sun X L. A flexible electron-blocking interfacial shield for dendrite-free solid lithium metal batteries[J]. Nat. Commun., 2021, 12(1): 176.
文章导航

/