欢迎访问《电化学(中英文)》期刊官方网站,今天是
研究论文

特殊整平剂甲基橙在通孔电镀铜的应用

  • 徐佳莹 ,
  • 王守绪 ,
  • 苏元章 ,
  • 杜永杰 ,
  • 齐国栋 ,
  • 何为 ,
  • 周国云 ,
  • 张伟华 ,
  • 唐耀 ,
  • 罗毓瑶 ,
  • 陈苑明
展开
  • 1.电子科技大学材料与能源学院,四川 成都 611731
    2.珠海方正科技高密电子有限公司&珠海方正科技多层电路板有限公司,广东 珠海 519175
    3.珠海市能动科技光学产业有限公司,广东 珠海 519050
    4.珠海杰赛科技有限公司,广东 珠海 519175

收稿日期: 2022-03-04

  修回日期: 2022-04-10

  网络出版日期: 2022-05-24

Investigation of Through-Hole Copper Electroplating with Methyl Orange as A Special Leveler

  • Jia-Ying Xu ,
  • Shou-Xu Wang ,
  • Yuan-Zhang Su ,
  • Yong-Jie Du ,
  • Guo-Dong Qi ,
  • Wei He ,
  • Guo-Yun Zhou ,
  • Wei-Hua Zhang ,
  • Yao Tang ,
  • Yu-Yao Luo ,
  • Yuan-Ming Chen
Expand
  • 1. School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 611731, Sichuan, China
    2. Zhuhai Founder Sci-Tech High-density Electronics Co., Ltd and Zhuhai Founder Sci-Tech Multilayer Circuit Board Co., Ltd., Zhuhai 519175, Guangdong, China
    3. Zhuhai Dynamic Technology Optical Industry Co., Ltd, Zhuhai 519050, Guangdong, China
    4. GCI Science & Technology(Zhuhai)Co., Ltd, Zhuhai 519175, Guangdong, China
* (86)18980602785, E-mail: ymchen@uestc.edu.cn

Received date: 2022-03-04

  Revised date: 2022-04-10

  Online published: 2022-05-24

摘要

甲基橙具有两种基团,可以同时起到加速和抑制作用,可作为特殊的整平剂应用与通孔电镀铜实验中。通过分子动力学模拟和量子化学计算来表征甲基橙在通孔电镀铜中的作用,结果表明甲基橙可以很好地吸附在阴极表面并抑制铜的电沉积。 通过恒电流测试和循环伏安测试结果显示, 甲基橙由于同时具有磺酸基的去极化和其分子结构部分的极化作用, 形成协同分子内对铜加速还原和阻碍传质的竞争效应, 所以几乎不影响电位。在板厚孔径为10:1的通孔电镀铜实验中, 仅以甲基橙和环氧乙烷和环氧丙烷嵌段共聚物作为添加剂, TP值可达到92.34%。

本文引用格式

徐佳莹 , 王守绪 , 苏元章 , 杜永杰 , 齐国栋 , 何为 , 周国云 , 张伟华 , 唐耀 , 罗毓瑶 , 陈苑明 . 特殊整平剂甲基橙在通孔电镀铜的应用[J]. 电化学, 2022 , 28(7) : 2213003 . DOI: 10.13208/j.electrochem.2213003

Abstract

Methyl Orange (MO) with two kinds of functional groups can act as both an accelerator and an inhibitor, which has been used as a special leveler to simplify the electroplating additive system in the through-hole (TH) copper electroplating experiments. In this work, the role of MO in TH electroplating is characterized by molecular dynamics simulations and quantum chemical calculations. It is suggested that MO can spontaneously flatten the copper surface and be well adsorbed on the cathode surface, which inhibit the copper electrodeposition on the cathode. Electrochemical behavior of MO was evaluated by galvanostatic measurements (GM) and cyclic voltammetry (CV) to confirm that MO hardly affects the potential due to its duel functions of depolarizing and polarizing effects from the molecular structure of sulfonic acid group and other groups to achieve the internal Cu2+ reduction acceleration and mass transfer inhibition. Throw power value of TH with the aspect ratio of 10:1 could reach 92.34% from the base plating solution bath with the additions of only EO/PO and MO. The study of MO could provide new ideas for the development of electroplating additive system.

参考文献

[1] Wang C, Zhang J Q, Yang P X, Zhang B Q, An M Z. Through-hole copper electroplating using nitrotetrazolium blue chloride as a leveler[J]. J. Electrochem. Soc., 2013, 160(3): D85-D88.
[2] Wang C, Zhang J Q, Yang P X, An M Z. Electrochemical behaviors of Janus Green B in through-hole copper electroplating: An insight by experiment and density functional theory calculation using Safranine T as a comparison[J]. Electrochim. Acta, 2013, 92: 356-364.
[3] Ding X C, Peng D M, Chen Z X, Cheng J. Effect of novel leveling agent TS-L on electrodeposition of copper[J]. Ele-ctroplating&Finishing, 2016, 35(11): 556-559.
[4] Zheng L. Investigation on electrochemical performance and tuning property of the organic-additive-system for copper electrodeposition[D]. Chengdu: University of Electronic Science and Technology of China, 2020.
[5] Zhang Y H, An M Z, Yang P X, Zhang J Q. Recent advances in electroplating of though-hole copper interconnection[J]. Electrocatalysis, 2021, 12(6): 619-627.
[6] Li Y B, Wang W, Li Y L. Adsorption behavior and related mechanism of Janus Green B during copper via-filling process[J]. J. Electrochem. Soc., 2009, 156(4): D119-D124.
[7] Tao Z H, Liu G T, Li Y X, Su H. Electrochemical and analytical study of electroplating additive in copper plating solution for microvia filling[J]. Circuit World, 2019, 45(3): 124-131.
[8] Zheng L, He W, Zhu K, Wang C, Wang S X, Hong Y, Chen Y M, Zhou G Y, Miao H, Zhou J Q. Investigation of poly (1-vinyl imidazole co 1, 4-butanediol diglycidyl ether) as a leveler for copper electroplating of through-hole[J]. Electrochim. Acta, 2018, 283: 560-567.
[9] Xiang J. Mechanism and application of copper eletrodeposition for the interconnection structures in package substrate[D]. Chengdu: University of Electronic Science and Technology of China, 2018.
[10] Chen B A, Wang A Y, Wu S Y, Wang L M. Polyquaternium-2: A New levelling agent for copper electroplating from acidic sulphate bath[J]. Electrochemistry, 2016, 84(6): 414-419.
[11] Wang C, Peng C, Xiang J, Chen Y M, He W, Su X H, Luo Y Y. Research and application of copper electroplating in interconnection of printed circuit board[J]. J. Electrochem., 2021, 27(3): 257-268.
[12] Lai Z Q. Research and application of high speed copper electroplating for the interconnection micro-holes of pri-nted circuit board[D]. Chengdu: University of Electronic Science and Technology of China, 2020.
[13] Liu C W, Tsao J C, Tsai M S, Wang Y L. Effects of wetting ability of plating electrolyte on Cu seed layer for electroplated copper film[J]. J. Vac. Sci. Technol. A, 2004, 22(6): 2315-2320.
[14] Wang C. Study on molecular simulation and mechanism of the additives used for through-hole copper electroplating on PCB[D]. Harbin: Harbin Institute of Technology, 2013.
[15] Wang Y F, Hong Y, Zhou G Y, Wang X H, Song J H, He W, Gao Z P, Zhang W H, Sun R, Sun Y K, Ai K H, Li Q H. Mechanism of a catalytic silver(I)-complex: assisted electroless deposition of inductance coil on poly(ethylene terephthalate) film[J]. J. Mater. Sci.-Mater. Electron., 2020, 31(11): 8165-8173.
文章导航

/