欢迎访问《电化学(中英文)》期刊官方网站,今天是
综述

化学镀钴和超级化学镀填充的研究进展

  • 沈钰 ,
  • 李冰冰 ,
  • 马艺 ,
  • 王增林
展开
  • 陕西师范大学化学化工学院, 陕西 西安 710062

收稿日期: 2022-04-02

  修回日期: 2022-05-07

  网络出版日期: 2022-05-20

Research Progress in Electroless Cobalt Plating and the Bottom-up Filling of Electroless Plating

  • Yu Shen ,
  • Bing-Bing Li ,
  • Yi Ma ,
  • Zeng-Lin Wang
Expand
  • Shaanxi Normal University, School of Chemistry and Chemical Engineering, Xi’an 710062, Shaanxi, China
* (86-29)81530761, E-mail: wangzl@snnu.edu.cn

Received date: 2022-04-02

  Revised date: 2022-05-07

  Online published: 2022-05-20

摘要

随着半导体集成度的不断提高,铜互连线的电阻率迅速提高。当互连线宽度接近7 nm时,铜互连线的电阻率与钴接近。IBM和美国半导体公司(ASE)已经使用金属钴取代铜作为下一代互连线材料。然而,钴种子层的形成和超级电镀钴填充7 nm微孔的技术工艺仍是一个很大的挑战。化学镀是在绝缘体表面形成金属种子层的一种非常简单的方法, 通过超级化学镀填充方式, 直径为几纳米的盲孔可以无空洞和无缝隙的方式完全填充。本文综述了化学镀钴的研究进展,并分析了还原剂种类对化学镀钴沉积速率和镀膜质量的影响。同时, 在长期从事超级化学填充研究的基础上, 作者提出了通过超级化学镀钴技术填充7 nm以及一下微盲孔的钴互连线工艺。

本文引用格式

沈钰 , 李冰冰 , 马艺 , 王增林 . 化学镀钴和超级化学镀填充的研究进展[J]. 电化学, 2022 , 28(7) : 2213002 . DOI: 10.13208/j.electrochem.2213002

Abstract

With the continuous improvement of semiconductor integration, the resistivity of copper interconnect lines increases rapidly. When the width of the interconnect line is close to 7 nm, the resistivity of copper becomes the same as that of cobalt. International Business Machines Corporation (IBM) and Advanced Semiconductor Incorporation (ASI) have used cobalt to replace copper as a next-generation interconnect material. However, the fabrication of the cobalt seed layer and the super filling of electroplating cobalt for the 7 nm via-holes have been still the large challenge. Electroless plating is a very simple method to form a seed layer on the surface of an insulator. By the bottom-up filling of electroless plating, via-holes with several nanometers could be filled completely. In this paper, the research progress in electroless cobalt plating is reviewed, and the effects of the reductant species on the deposition rate and the film quality of electroless cobalt plating are analyzed. Meanwhile, based on long-term and a lot of studies, a bottom-up filling of electroless cobalt plating for 7 nm via-hole in semiconductor cobalt interconnects is proposed.

参考文献

[1] Beyne S, Dutta S, Pedreira O V, Bosman N, Adelmann C, De Wolf I, Tokei Z, Croes K. The first observation of p-type electromigration failure in full ruthenium interconnects[C]. Beyne S, IEEE International Reliability Physics Symposium, USA: IEEE, 2018.
[2] Sondheimer E H. The mean free path of electrons in metals[J]. Adv. Phys., 2001, 50(6): 499-537.
[3] Mont F W, Zhang X Y, Wang W, Kelly J J, Standaert T E, Quon R, Ryan E T. Cobalt interconnect on same copper barrier process integration at the 7 nm node[C]. Mont F W, 2017 IEEE International Interconnect Technology Conference (IITC), USA: IEEE, 2017.
[4] Wen D W, Kuwahara H, Kato H, Kobayashi M, Sato Y, Masaki T, Kakihana M. Anomalous orange light-emitting (Sr,Ba)2SiO4: Eu2+ phosphors for warm white LEDs[J]. ACS Appl. Mater. Interfaces, 2016, 8(18): 11615-11620.
[5] Webb E, Witt C, Andryuschenko T, Reid J. Integration of thin electroless copper films in copper interconnect metallization[J]. J. Appl. Electrochem., 2004, 34(3): 291-300.
[6] Ni X R, Chen Y M, Jin X F, Wang C, Huang Y Z, Hong Y, Su X H, Zhou G Y, Wang S X, He W, Chen Q G. Investigation of polyvinylpyrrolidone as an inhibitor for trench super-filling of cobalt electrodeposition[J]. J. Taiwan Inst. Chem. Eng., 2020, 112: 232-239.
[7] Buckalew B, Oberst J, Ponnuswamy T. Electrodeposited cobalt for advanced packaging applications[C]. Buckalew, 2017 IEEE Electron Devices Technology and Manufacturing Conference (EDTM), USA: IEEE, 2017.
[8] Kongstein O E, Haarberg G M, Thonstad J. Current efficiency and kinetics of cobalt electrodeposition in acid chloride solutions. Part I: The influence of current density, pH and temperature[J]. J. Appl. Electrochem., 2007, 37(6): 669-674.
[9] Pearlstein F, Weightman R F. Electroless cobalt deposition from acid baths[J]. J. Electrochem. Soc., 1974, 121: 1023-1023.
[10] Frieze A S, Sard R, Weil R. Some properties of electroless cobalt[J]. J. Electrochem. Soc., 1968, 115: 586-586.
[11] Khan M R, Lee J I. Comparison of plated Co-P and sputtered Co-Re as recording media based on nucleation, growth, structure, and magnetics[J]. J. Appl. Phys., 1985, 57(8): 4028-4030.
[12] Hwang B J, Lin S H. Reaction mechanism of electroless deposition: Observations of morphology evolution during nucleation and growth via tapping mode AFM[J]. J. Ele-ctrochem. Soc., 1995, 142(11): 3749-3754.
[13] Liu W L, Hsieh S H, Tsai T K, Chen W J. Growth kinetics of electroless cobalt deposition by TEM[J]. J. Electro-chem. Soc., 2004, 151(10): C680-C683.
[14] Yu Y D, Song Z L, Ge H L, Wei G Y. Preparation of CoP films by ultrasonic electroless deposition at low initial temperature[J]. Prog. Nat. Sci., 2014, 24(3): 232-238.
[15] Magagnin L, Sirtori V, Seregni S, Origo A, Gavallotti P L. Electroless Co-P for diffusion barrier in Pb-free soldering[J]. Electrochim. Acta, 2005, 50(23): 4621-4625.
[16] Chang Y H, Lin C C, Hung M P, Chin T S. The microstructure and magnetic properties of electroless-plated Co-B thin films[J]. J. Electrochem. Soc., 1986, 133(5): 985-988.
[17] Deng B, Wu Y C, Zhang Y, Yang Y, Li G H. Study of electroless plating process for cobalt-boron alloy and its properties(I)[J]. Electroplating & Finishing, 2001, (1): 12-15.
[18] Yang Y, Wu Y C, Qiao Y, Zhang Y, Deng B, Li G H. Study of electroless plating process for cobalt-boron alloy and its properties(II)[J]. Electroplating & Finishing, 2001, (2): 5-7+21.
[19] Shipley C R. Historical highlights of electroless plating[J]. Plat. Surf. Finish., 1984, 71(6): 92-99.
[20] Li N. Practical technology of electroless plating[M]. China: Chemical Industry Press, 2012: 45.
[21] Saito T, Sato E, Matsuoka M, Iwakura C. Electroless deposition of Ni-B, Co-B and Ni-Co-B alloys using dimet-hylamineborane as a reducing agent[J]. J. Appl. Electro-chem., 1998, 28(5): 559-563.
[22] Shacham-Diamand Y, Sverdlov Y, Bogush V, Ofek-Alomg R. A surface adsorption model for electroless cobalt alloy thin films[J]. J. Solid State Electrochem., 2007, 11(7): 929-938.
[23] Stankeviciene I, Jagminiene A, Tamasauskaite-Tamasiunaite L, Sukackiene Z, Gedvilas M, Norkus E. Investigation of electroless deposition of cobalt films by EQCM in the presence of different amines[J]. Mater Sci. Eng. B-Adv. Funct. Solid-State Mater., 2019, 241: 9-12.
[24] Zyulkov I, Armini S, Opsomer K, Detavernier C, De Gendt S. Selective electroless deposition of cobalt using amino-terminated SAMs[J]. J. Mater. Chem. C, 2019, 7(15): 4392-4402.
[25] Chang S Y, Wan C C, Wang Y Y, Shih C H, Tsai M H, Shue S L, Yu C H, Liang M S. Characterization of Pd-free electroless Co-based cap selectively deposited on Cu surface via borane-based reducing agent[J]. Thin Solid Films, 2006, 515(3): 1107-1111.
[26] Cheng S L, Hsu T L, Lee T, Lee S W, Hu J C, Chen L T. Characterization and kinetic investigation of electroless deposition of pure cobalt thin films on silicon substrates[J]. Appl. Surf. Sci., 2013, 264: 732-736.
[27] Yagi S, Kawamori M, Matsubara E. Electrochemical QCM study of the synthesis process of cobalt nanoparticles via electroless deposition[J]. Electrochem. Solid State Lett., 2010, 13(2): E1-E3.
[28] Djokic S S. Electroless deposition of cobalt using hydrazine as a reducing agent[J]. J. Electrochem. Soc., 1997, 144(7): 2358-2363.
[29] Ohno I, Wakabayashi O, Haruyama S. Anodic oxidation of reductants in electroless plating[J]. J. Electrochem. Soc., 1985, 132(10): 2323-2330.
[30] Kim T Y, Lee M H, Byun J, Jeon H, Choe S, Kim J J. Influence of reducing agent on chemical decomposition of bis(3-sulfopropyl) disulfide (SPS) in Cu Plating bath[J]. J. Electrochem. Soc., 2021, 168(3): 032501.
[31] Lee M H, Kim M J, Kim J J. Competitive adsorption between bromide ions and bis(3-Sulfopropyl)-disulfide for Cu microvia filling[J]. Electrochim. Acta, 2021, 370: 137707.
[32] Shingubara S, Wang Z L, Yaegashi O, Obata R, Sakaue H, Takahagi T. Bottom-up fill of copper in high aspect ratio via holes by electroless plating[C]. Shingubara S, Proceedings of IEEE International Electron Devices Meeting, USA: IEEE, 2003.
[33] Shingubara S, Wang Z L, Yaegashi O, Obata R, Sakaue H, Takahagi T. Bottom-up fill of copper in deep submicrometer holes by electroless plating[J]. Electrochem. Solid State Lett., 2004, 7(6): C78-C80.
[34] Wang Z L, Yaegashi O, Sakaue H, Takahagi T, Shingubara S. Bottom-up fill for submicrometer copper via holes of ULSIs by electroless plating[J]. J. Electrochem. Soc., 2004, 151(12): C781-C785.
[35] Wang Z L, Yaegashi O, Sakaue H, Takahagi T, Shingubara S. Suppression of native oxide growth in sputtered TaN films and its application to Cu electroless plating[J]. J. Appl. Phys., 2003, 94(7): 4697-4701.
[36] Lee C H, Lee S C, Kim J J. Bottom-up filling in Cu electroless deposition using bis-(3-sulfopropyl)-disulfide (SPS)[J]. Electrochim. Acta, 2005, 50(16-17): 3563-3568.
[37] Hasegawa M, Yamachika N, Shacham-Diamand Y, Okinaka Y, Osaka T. Evidence for “superfilling” of submicrometer trenches with electroless copper deposit[J]. Appl. Phys. Lett., 2007, 90(10): 101916.
[38] Wang X. Bottom-up filling in electroless plating with an addition of JGB-RPE[J]. Russ. J. Electrochem., 2014, 50(5): 438-443.
[39] Yang Z F, Li N, Wang X, Wang Z X, Wang Z L. Bottom-up filling in electroless plating with an addition of PEG-PPG triblock copolymers[J]. Electrochem. Solid State Lett., 2010, 13(7): D47-D49.
[40] Wang X, Yang Z F, Wang Z L. Effect of additive triblock copolymer PEP-3100 on bottom-up filling in electroless copper plating[J]. Russ. J. Electrochem., 2012, 48(1): 99-103.
[41] Hasegawa M, Okinaka Y, Shachm-Diamand Y, Osaka T. Void-free trench-filling by electroless copper deposition using the combination of accelerating and inhibiting additives[J]. Electrochem. Solid-State Lett., 2006, 9(8): C138-C140.
[42] Hasegawa M, Yamachika N, Okinaka Y, Shacham-Diamand Y, Osaka T. An electrochemical investigation of additive effect in trench-filling of ULSI interconnects by electroless copper deposition[J]. Electrochemistry, 2007, 75(4): 349-358.
[43] Wang X, Yang Z F, Li N, Liu Z H, Yang Z P, Wang Z L. First synergy effects of SPS and PEG-4000 on the bottom-up filling in electroless copper plating[J]. J. Electro-chem. Soc., 2010, 157(10): D546-D549.
[44] Yang Z F, Wang X, Li N, Wang Z X, Wang Z L. Design and achievement of a complete bottom-up electroless copper filling for sub-micrometer trenches[J]. Electrochim. Acta, 2011, 56(9): 3317-3321.
[45] Zan L X, Liu Z H, Yang Z P, Wang Z L. A synergy effect of 2-MBT and PE-3650 on the bottom-up filling in electroless copper plating[J]. Electrochem. Solid-State Lett., 2011, 14(12): D107-D109.
[46] Zan L X, Wang Z L, Liu Z H, Yang Z P. Achievement of bottom-up electroless nickel filling on the SiO2 surface with Pd-activated SAM[J]. ECS Electrochem. Lett., 2013, 2(1): D1-D3.
文章导航

/