欢迎访问《电化学(中英文)》期刊官方网站,今天是
综述

析氧反应铁镍基预催化剂的表界面调控与进展

  • 李家欣 ,
  • 冯立纲
展开
  • 扬州大学化学化工学院, 江苏 扬州225002

收稿日期: 2022-04-06

  修回日期: 2022-04-11

  网络出版日期: 2022-04-25

Surface Structure Engineering of FeNi-Based Pre-Catalyst for Oxygen Evolution Reaction: A Mini Review

  • Jia-Xin Li ,
  • Li-Gang Feng
Expand
  • School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, China
* Tel: (86)17306299692, E-mail: ligang.feng@yzu.edu.cn; fenglg11@gmail.com

Received date: 2022-04-06

  Revised date: 2022-04-11

  Online published: 2022-04-25

摘要

析氧反应(OER)是水分解中重要的半反应, 为提高其催化性能,开发高效非贵金属催化剂已成为当前的研究重点。铁镍(FeNi)基材料被认为是最好的预催化剂, 在催化过程中,它们的表面将转变成高价态金属氧化物或氢氧化物作为真正的活性物质。FeNi基预催化剂的结构和形貌在很大程度上影响了其催化性能, 因此, 优化和调整FeNi基预催化剂的结构和化学环境可以提高电催化性能。基于我们的研究工作, 我们撰写了FeNi基预催化剂的表面结构调控促进电化学析氧反应的研究进展。我们首先介绍了碱性OER的反应机理, 然后从杂原子掺杂、表面成分改性、选择性结构转变、表面化学状态调节、异质结构构建和载体效应等方面讨论了FeNi基预催化剂表面调控对析氧反应性能的影响。尽管在OER反应中FeNi都被认为转变成高价态的金属活性物质, Fe/Ni体系的表面结构、形貌和化学状态仍然能够显著影响其最终的催化性能, 即FeNi基预催化剂的性质会影响析氧反应的催化性能。通过精细设计并尽量提高Fe和Ni的协同作用将有利用提升氧析出的催化性能。我们希望本综述能够对FeNi基预催化剂的制备和表界面性质调控与电催化析氧反应性能的理解有所帮助。

本文引用格式

李家欣 , 冯立纲 . 析氧反应铁镍基预催化剂的表界面调控与进展[J]. 电化学, 2022 , 28(9) : 2214001 . DOI: 10.13208/j.electrochem.2214001

Abstract

Oxygen evolution reaction (OER) is a significant half-reaction for water splitting reaction, and attention is directed to the high-performance non-precious catalysts. Iron nickel (FeNi)-based material is considered as the most promising pre-catalyst, that will be transferred to the real active phase in the form of high valence state metal species. Even so, the catalytic performance is largely influenced by the structure and morphology of the FeNi pre-catalysts, and lots of work has been done to optimize and tune the structure and chemical environment of the FeNi- based pre-catalysts so as to increase the catalytic performance. Herein, based on our work, a mini review is proposed for the surface structure engineering of FeNi-based pre-catalyst for OER. The reaction mechanism of alkaline OER is firstly presented, and then the strategies in surface engineering of FeNi-based pre-catalyst for improving OER performance are discussed in terms of heteroatom doping, surface composition modification, selective structural transformation, surface chemical state regulation, heterostructure construction, and support effect. It can be concluded that the surface structure, morphology, and the chemical states of Fe/Ni in the system will significantly influence the final catalytic performance, though all of them were transferred into the active phase state of high valence state metal species. In other words, the catalytic performance of FeNi-based catalysts is also determined by the property of their pre-catalysts. To carefully design and maximize the synergistic effect of Fe and Ni is necessary to boost the catalytic performance. We hope this topic will be a good and timely complement to the study of FeNi-based catalysts for OER in the water-splitting technique.

参考文献

[1] Liu P F, Yin H J, Fu H Q, Zu M Y, Yang H G, Zhao H J. Activation strategies of water-splitting electrocatalysts[J]. J. Mater. Chem. A, 2020, 8(20): 10096-10129.
[2] Yuan N N, Jiang Q Q, Li J, Tang J G. A review on non-no-ble metal based electrocatalysis for the oxygen evolution reaction[J]. Arab. J. Chem., 2020, 13(2): 4294-4309.
[3] Han L, Dong S J, Wang E K. Transition-metal (Co, Ni, and Fe)-based electrocatalysts for the water oxidation reaction[J]. Adv. Mater., 2016, 28(42): 9266-9291.
[4] Wu Y J, Yang J, Tu T X, Li W Q, Zhang P F, Zhou Y, Li J F, Li J T, Sun S G. Evolution of cationic vacancy defects: A motif for surface restructuration of OER precatalyst[J]. Angew. Chem. Int. Edit., 2021, 60(51): 26829-26836.
[5] Fabbri E, Schmidt T J. Oxygen evolution reaction-the enigma in water electrolysis[J]. ACS Catal., 2018, 8(10): 9765-9774.
[6] Cook T R, Dogutan D K, Reece S Y, Surendranath Y, Teets T S, Nocera D G. Solar energy supply and storage for the legacy and nonlegacy worlds[J]. Chem. Rev., 2010, 110(11): 6474-6502.
[7] Rossmeisl J, Qu Z W, Zhu H, Kroes G J, Norskov J K. Electrolysis of water on oxide surfaces[J]. J. Electroanal. Chem., 2007, 607(1-2): 83-89.
[8] Man I C, Su H Y, Calle-Vallejo F, Hansen H A, Martínez J I, Inoglu N G, Kitchin J, Jaramillo T F, Norskov J K, Rossmeisl J. Universality in oxygen evolution electrocatalysis on oxide surfaces[J]. ChemCatChem, 2011, 3(7): 1159-1165.
[9] Xu Q C, Zhang J H, Zhang H X, Zhang L Y, Chen L, Hu Y J, Jiang H, Li C Z. Atomic heterointerface engineering overcomes the activity limitation of electrocatalysts and promises highly-efficient alkaline water splitting[J]. Energ. Environ. Sci., 2021, 14(10): 5228-5259.
[10] Suen N T, Hung S F, Quan Q, Zhang N, Xu Y J, Chen H M. Electrocatalysis for the oxygen evolution reaction: recent development and future perspectives[J]. Chem. Soc. Rev., 2017, 46(2): 337-365.
[11] Ahn H S, Bard A J. Surface interrogation scanning electrochemical microscopy of Ni1-xFexOOH (0 < x < 0.27) oxygen evolving catalyst: Kinetics of the “fast” iron sites[J]. J. Am. Chem. Soc., 2016, 138(1): 313-318.
[12] Li N, Bediako D K, Hadt R G, Hayes D, Kempa T J, von Cube F, Bell D C, Chen L X, Nocera D G. Influence of iron doping on tetravalent nickel content in catalytic oxygen evolving films[J]. Proc. Natl. Acad. Sci. U.S.A., 2017, 114(7): 1486-1491.
[13] Zhong L, Bao Y F, Yu X, Feng L G. An Fe-doped NiTe bulk crystal as a robust catalyst for the electrochemical oxygen evolution reaction[J]. Chem. Commun., 2019, 55(63): 9347-9350.
[14] Zhang J F, Liu J Y, Xi L F, Yu Y F, Chen N, Sun S H, Wang W C, Lange K M, Zhang B. Single-atom Au/NiFe layered double hydroxide electrocatalyst: Probing the origin of activity for oxygen evolution reaction[J]. J. Am. Chem. Soc., 2018, 140(11): 3876-3879.
[15] Li Y F, Selloni A. Mechanism and activity of water oxidation on selected surfaces of pure and Fe-doped NiOx[J]. ACS Catal., 2014, 4(4): 1148-1153.
[16] Li D Z, Liu H, Feng L G. A review on advanced FeNi-based catalysts for water splitting reaction[J]. Energ. Fuel., 2020, 34(11): 13491-13522.
[17] Hou G Y, Wu J, Li T, Lin J, Wang B F, Peng L, Yan T, Hao L S, Qiao L X, Wu X F. Nitrogen-rich biomass derived three-dimensional porous structure captures FeNi metal nanospheres: An effective electrocatalyst for oxygen evolution reaction[J]. Int. J. Hydrogen. Energ., 2022, 47(25): 12487-12499.
[18] Li X M, Hao X G, Wang Z D, Abudula A, Guan G Q. In-situ intercalation of NiFe LDH materials: An efficient approach to improve electrocatalytic activity and stability for water splitting[J]. J. Power Sources, 2017, 347: 193-200.
[19] Gu Y, Chen S, Ren J, Jia Y A, Chen C M, Komarneni S, Yang D J, Yao X D. Electronic structure tuning in Ni3FeN/r-GO aerogel toward bifunctional electrocatalyst for overall water splitting[J]. ACS Nano, 2018, 12(1): 245-253.
[20] Ren J T, Wang Y S, Chen L, Gao L J, Tian W W, Yuan Z Y. Binary FeNi phosphides dispersed on N,P-doped carbon nanosheets for highly efficient overall water splitting and rechargeable Zn-air batteries[J]. Chem. Eng. J., 2020, 389: 124408.
[21] Gong M, Dai H J. A mini review of NiFe-based materials as highly active oxygen evolution reaction electrocatalysts[J]. Nano Res., 2015, 8(1): 23-39.
[22] Mohammed-Ibrahim J. A review on NiFe-based electrocatalysts for efficient alkaline oxygen evolution reaction[J]. J. Power. Sources, 2020, 448: 227375.
[23] Kang Q L, Lai D W, Tang W Y, Lu Q Y, Gao F. Intrinsic activity modulation and structural design of NiFe alloy catalysts for an efficient oxygen evolution reaction[J]. Chem. Sci., 2021, 12(11): 3818-3835.
[24] Solomon G, Landström A, Mazzaro R, Jugovac M, Moras P, Cattaruzza E, Morandi V, Concina I, Vomiero A. NiMoO4@Co3O4 core-shell nanorods: in situ catalyst reconstruction toward high efficiency oxygen evolution reaction[J]. Adv. Energy Mater., 2021, 11(32): 2101324.
[25] Yan Y, Xia B Y, Zhao B, Wang X. A review on noble-metal-free bifunctional heterogeneous catalysts for overall electrochemical water splitting[J]. J. Mater. Chem. A, 2016, 4(45): 17587-17603.
[26] Dionigi F, Zeng Z H, Sinev I, Merzdorf T, Deshpande S, Lopez M B, Kunze S, Zegkinoglou I, Sarodnik H, Fan D X, Bergmann A, Drnec J, de Araujo J F, Gliech M, Teschner D, Zhu J, Li W X, Greeley J, Cuenya B R, Strasser P. In-situ structure and catalytic mechanism of NiFe and CoFe layered double hydroxides during oxygen evolution[J]. Nat. Commun., 2020, 11(1): 2522.
[27] Smith R D L, Pasquini C, Loos S, Chernev P, Klingan K, Kubella P, Mohammadi M R, Gonzalez-Flores D, Dau H. Spectroscopic identification of active sites for the oxygen evolution reaction on iron-cobalt oxides[J]. Nat. Commun., 2017, 8: 2022.
[28] Jörissen L. Bifunctional oxygen/air electrodes[J]. J. Power. Sources, 2006, 155(1): 23-32.
[29] Hunter B M, Gray H B, Müller A M. Earth-abundant heterogeneous water oxidation catalysts[J]. Chem. Rev., 2016, 116(22): 14120-14136.
[30] Plevová M, Hnát J, Bouzek K. Electrocatalysts for the oxygen evolution reaction in alkaline and neutral media. A comparative review[J]. J. Power. Sources, 2021, 507: 230072.
[31] Xue Z, Zhang X Y, Qin J Q, Liu R P. Revealing Ni-based layered double hydroxides as high-efficiency electrocatalysts for the oxygen evolution reaction: A DFT study[J]. J. Mater. Chem. A, 2019, 7(40): 23091-23097.
[32] Zhu K Y, Zhu X F, Yang W S. Application of in situ techniques for the characterization of NiFe-based oxygen evolution reaction (OER) electrocatalysts[J]. Angew. Chem. Int. Edit., 2019, 58(5): 1252-1265.
[33] Ali-Löytty H, Louie M W, Singh M R, Li L, Casalongue H G S, Ogasawara H, Crumlin E J, Liu Z, Bell A T, Nilsson A, Friebel D. Ambient-pressure XPS study of a Ni-Fe electrocatalyst for the oxygen evolution reaction[J]. J. Phys. Chem. C, 2016, 120(4): 2247-2253.
[34] Qiu Z, Ma Y, Edvinsson T. In operando Raman investigation of Fe doping influence on catalytic NiO intermediates for enhanced overall water splitting[J]. Nano Energy, 2019, 66: 104118.
[35] Wang D N, Zhou J G, Hu Y F, Yang J L, Han N, Li Y G, Sham T K. In situ X-ray absorption near-edge structure study of advanced NiFe(OH)x electrocatalyst on carbon paper for water oxidation[J]. J. Phys. Chem. C, 2015, 119(34): 19573-19583.
[36] Chen J Y C, Dang L N, Liang H F, Bi W L, Gerken J B, Jin S, Alp E E, Stahl S S. Operando analysis of NiFe and Fe oxyhydroxide electrocatalysts for water oxidation: Detection of Fe4+ by Mössbauer spectroscopy[J]. J. Am. Chem. Soc., 2015, 137(48): 15090-15093.
[37] Trotochaud L, Young S L, Ranney J K, Boettcher S W. Nickel-iron oxyhydroxide oxygen-evolution electrocatalysts: The role of intentional and incidental iron incorporation[J]. J. Am. Chem. Soc., 2014, 136(18): 6744-6753.
[38] Zhang G W, Zeng J R, Yin J, Zuo C Y, Wen P, Chen H T, Qiu Y J. Iron-facilitated surface reconstruction to in-situ generate nickel-iron oxyhydroxide on self-supported FeNi alloy fiber paper for efficient oxygen evolution reaction[J]. Appl. Catal. B., 2021, 286: 119902.
[39] Tedstone A A, Lewis D J, O’Brien P. Synthesis, properties, and applications of transition metal-doped layered transition metal dichalcogenides[J]. Chem. Mater., 2016, 28(7): 1965-1974.
[40] Saleh N B, Milliron D J, Aich N, Katz L E, Liljestrand H M, Kirisits M J. Importance of doping, dopant distribution, and defects on electronic band structure alteration of metal oxide nanoparticles: Implications for reactive oxygen species[J]. Sci. Total Environ., 2016, 568: 926-932.
[41] Wang J, Gao Y, You T L, Ciucci F. Bimetal-decorated nanocarbon as a superior electrocatalyst for overall water splitting[J]. J. Power. Sources, 2018, 401: 312-321.
[42] Yang Y S, Zhuang L Z, Lin R J, Li M R, Xu X Y, Rufford T E, Zhu Z H. A facile method to synthesize boron-doped Ni/Fe alloy nano-chains as electrocatalyst for water oxidation[J]. J. Power. Sources, 2017, 349: 68-74.
[43] Liu J L, Zhu D D, Ling T, Vasileff A, Qiao S Z. S-NiFe2O4 ultra-small nanoparticle built nanosheets for efficient water splitting in alkaline and neutral pH[J]. Nano Energy, 2017, 40: 264-273.
[44] Xuan C J, Wang J, Xia W W, Zhu J, Peng Z K, Xia K D, Xiao W P, Xin H L L, Wang D L. Heteroatom (P, B, or S) incorporated NiFe-based nanocubes as efficient electrocatalysts for the oxygen evolution reaction[J]. J. Mater. Chem. A, 2018, 6(16): 7062-7069.
[45] Liu Z, Yu X, Yu H G, Xue H G, Feng L G. Nanostructured FeNi3 incorporated with carbon doped with multiple nonmetal elements for the oxygen evolution reaction[J]. ChemSusChem, 2018, 11(16): 2703-2709.
[46] Yang Y, Su J W, Jiang P, Chen J T, Hu L, Chen Q W. MOFs-derived N-doped carbon-encapsulated metal/alloy electrocatalysts to tune the electronic structure and reactivity of carbon active sites[J]. Chinese J. Chem., 2021, 39(9): 2626-2637.
[47] Wu H H, Wang J, Wang G X, Cai F, Ye Y F, Jiang Q K, Sun S C, Miao S, Bao X H. High-performance bifunctional oxygen electrocatalyst derived from iron and nickel substituted perfluorosulfonic acid/polytetrafluoroethylene copolymer[J]. Nano Energy, 2016, 30: 801-809.
[48] Du L, Luo L L, Feng Z X, Engelhard M, Xie X H, Han B H, Sun J M, Zhang J H, Yin G P, Wang C M, Wang Y, Shao Y Y. Nitrogen-doped graphitized carbon shell encapsulated NiFe nanoparticles: A highly durable oxygen evolution catalyst[J]. Nano Energy, 2017, 39: 245-252.
[49] Zhao Y, Nakamura R, Kamiya K, Nakanishi S, Hashimoto K. Nitrogen-doped carbon nanomaterials as non-metal electrocatalysts for water oxidation[J]. Nat. Commun., 2013, 4(1): 2390.
[50] Cui X J, Ren P J, Deng D H, Deng J, Bao X H. Single layer graphene encapsulating non-precious metals as high-performance electrocatalysts for water oxidation[J]. Energ. Environ. Sci., 2016, 9(1): 123-129.
[51] Lyons M E G, Doyle R L, Fernandez D, Godwin I J, Browne M P, Rovetta A. The mechanism and kinetics of electrochemical water oxidation at oxidized metal and metal oxide electrodes. Part 2. The surfaquo group mechanism: A mini review[J]. Electrochem. Commun., 2014, 45: 56-59.
[52] Liu Z, Yu H G, Dong B X, Yu X, Feng L G. Electrochemical oxygen evolution reaction efficiently boosted by thermal-driving core-shell structure formation in nanostructured FeNi/S, N-doped carbon hybrid catalyst[J]. Nano-scale, 2018, 10(35): 16911-16918.
[53] Joo J, Kim T, Lee J, Choi S I, Lee K. Morphology-controlled metal sulfides and phosphides for electrochemical water splitting[J]. Adv. Mater., 2019, 31(14): 1806682.
[54] Burke M S, Enman L J, Batchellor A S, Zou S H, Boettch-er S W. Oxygen evolution reaction electrocatalysis on transition metal oxides and (oxy)hydroxides: Activity trends and design principles[J]. Chem. Mater., 2015, 27(22): 7549-7558.
[55] Manso R H, Acharya P, Deng S Q, Crane C C, Reinhart B, Lee S, Tong X, Nykypanchuk D, Zhu J, Zhu Y M, Greenlee L F, Chen J Y. Controlling the 3-D morphology of Ni-Fe-based nanocatalysts for the oxygen evolution reaction[J]. Nanoscale, 2019, 11(17): 8170-8184.
[56] Stern L A, Feng L G, Song F, Hu X L. Ni2P as a Janus catalyst for water splitting: The oxygen evolution activity of Ni2P nanoparticles[J]. Energ. Environ. Sci., 2015, 8(8): 2347-2351.
[57] Liu Z, Tang B, Gu X C, Liu H, Feng L G. Selective structure transformation for NiFe/NiFe2O4 embedded porous nitrogen-doped carbon nanosphere with improved oxygen evolution reaction activity[J]. Chem. Eng. J., 2020, 395: 125170.
[58] Liu Z, Liu D Y, Zhao L Y, Tian J Q, Yang J, Feng L G. Efficient overall water splitting catalyzed by robust FeNi3N nanoparticles with hollow interiors[J]. J. Mater. Chem. A, 2021, 9(12): 7750-7758.
[59] Lv L, Li Z S, Xue K H, Ruan Y J, Ao X, Wan H Z, Miao X S, Zhang B S, Jiang J J, Wang C D, Ostrikov K. Tailoring the electrocatalytic activity of bimetallic nickel-iron diselenide hollow nanochains for water oxidation[J]. Nano Energy, 2018, 47: 275-284.
[60] Liu L N, Yan F, Li K Y, Zhu C L, Xie Y, Zhang X T, Chen Y J. Ultrasmall FeNi3N particles with an exposed active (110) surface anchored on nitrogen-doped graphene for multifunctional electrocatalysts[J]. J. Mater. Chem. A, 2019, 7(3): 1083-1091.
[61] Wang H, Li J M, Li K, Lin Y P, Chen J M, Gao L J, Nicolosi V, Xiao X, Lee J M. Transition metal nitrides for electrochemical energy applications[J]. Chem. Soc. Rev., 2021, 50(2): 1354-1390.
[62] Chen Y K, Yu J Y, Jia J, Liu F, Zhang Y W, Xiong G W, Zhang R T, Yang R Q, Sun D H, Liu H, Zhou W J. Metallic Ni3Mo3N porous microrods with abundant catalytic sites as efficient electrocatalyst for large current density and superstability of hydrogen evolution reaction and water splitting[J]. Appl. Catal. B., 2020, 272: 118956.
[63] Li D, Xing Y Y, Yang R, Wen T, Jiang D L, Shi W D, Yuan S Q. Holey cobalt-iron nitride nanosheet arrays as high-performance bifunctional electrocatalysts for overall water splitting[J]. ACS Appl. Mater. Interfaces, 2020, 12(26): 29253-29263.
[64] Kwag S H, Lee Y S, Lee J, Jeong D I, Kwon S B, Yoo J H, Woo S, Lim B S, Park W K, Kim M J, Kim J H, Lim B, Kang B K, Yang W S, Yoon D H. Design of 2D nanocrystalline Fe2Ni2N coated onto graphene nanohybrid sheets for efficient electrocatalytic oxygen evolution[J]. ACS Appl. Energ. Mater., 2019, 2(12): 8502-8510.
[65] Chen Q, Wang R, Yu M H, Zeng Y X, Lu F Q, Kuang X J, Lu X H. Bifunctional iron-nickel nitride nanoparticles as flexible and robust electrode for overall water splitting[J]. Electrochim. Acta, 2017, 247: 666-673.
[66] Kumar Y, Kibena-Põldsepp E, Kozlova J, Rähn M, Tre-shchalov A, Kikas A, Kisand V, Aruväli J, Tamm A, Douglin J C, Folkman S J, Gelmetti I, Garcés-Pineda F A, Galán-Mascarós J R, Dekel D R, Tammeveski K. Bifunctional oxygen electrocatalysis on mixed metal phthalocyanine-modified carbon nanotubes prepared via pyrolysis[J]. ACS Appl. Mater. Interfaces, 2021, 13(35): 41507-41516.
[67] Yan F, Wang Y, Li K Y, Zhu C L, Gao P, Li C Y, Zhang X T, Chen Y J. Highly stable three-dimensional porous nickel-iron nitride nanosheets for full water splitting at high current densities[J]. Chem. Eur. J., 2017, 23(42): 10187-10194.
[68] Lu T, Dong S M, Zhang C J, Zhang L X, Cui G L. Fabrication of transition metal selenides and their applications in energy storage[J]. Coordin. Chem. Rev., 2017, 332: 75-99.
[69] Li M, Liu H, Feng L G. Fluoridation-induced high-performance catalysts for the oxygen evolution reaction: A mini review[J]. Electrochem. Commun., 2021, 122: 106901.
[70] Zha M, Pei C G, Wang Q, Hu G Z, Feng L G. Electrochemical oxygen evolution reaction efficiently boosted by selective fluoridation of FeNi3 alloy/oxide hybrid[J]. J. Energy Chem., 2020, 47: 166-171.
[71] Pei C G, Gu Y, Liu Z, Yu X, Feng L G. Fluoridated iron-nickel layered double hydroxide for enhanced performance in the oxygen evolution reaction[J]. ChemSusChem, 2019, 12(16): 3849-3855.
[72] Su X Z, Wang Y, Zhou J, Gu S Q, Li J, Zhang S. Operando spectroscopic identification of active sites in NiFe Prussian blue analogues as electrocatalysts: Activation of oxygen atoms for oxygen evolution reaction[J]. J. Am. Chem. Soc., 2018, 140(36): 11286-11292.
[73] Liu H, Zha M, Liu Z, Tian J Q, Hu G Z, Feng L G. Synergistically boosting the oxygen evolution reaction of an Fe-MOF via Ni doping and fluorination[J]. Chem. Commun., 2020, 56(57): 7889-7892.
[74] Gu X C, Liu Z, Li M, Tian J Q, Feng L G. Surface structure regulation and evaluation of FeNi-based nanoparticles for oxygen evolution reaction[J]. Appl. Catal. B., 2021, 297: 120462.
[75] Trzešniewski B J, Diaz-Morales O, Vermaas D A, Longo A, Bras W, Koper M T M, Smith W A. In situ observation of active oxygen species in Fe-containing Ni-based oxygen evolution catalysts: The effect of pH on electrochemical activity[J]. J. Am. Chem. Soc., 2015, 137(48): 15112-15121.
[76] Yu L, Zhu Q, Song S W, McElhenny B, Wang D Z, Wu C Z, Qin Z J, Bao J M, Yu Y, Chen S, Ren Z F. Non-noble metal-nitride based electrocatalysts for high-performance alkaline seawater electrolysis[J]. Nat. Commun., 2019, 10(1): 5106.
[77] Zhang G W, Wang B, Li L, Yang S, Liu J M, Yang S C. Tailoring the electronic structure by constructing the heterointerface of RuO2-NiO for overall water splitting with ultralow overpotential and extra-long lifetime[J]. J. Mater. Chem. A, 2020, 8(36): 18945-18954.
[78] Pan S Y, Ma S X, Chang C F, Long X, Qu K G, Yang Z H. Activation of rhodium selenides for boosted hydrogen evolution reaction via heterostructure construction[J]. Mater. Today Phys., 2021, 18: 100401.
[79] Liang S Q, Jing M Z, Pervaiz E, Guo H C, Thomas T, Song W Y, Xu J, Saad A, Wang J C, Shen H J, Liu J, Yang M H. Nickel-iron nitride-nickel sulfide composites for oxygen evolution electrocatalysis[J]. ACS Appl. Mater. Interfaces, 2020, 12(37): 41464-41470.
[80] An L, Zhang Z Y, Feng J R, Lv F, Li Y X, Wang R, Lu M, Gupta R B, Xi P X, Zhang S. Heterostructure-promoted oxygen electrocatalysis enables rechargeable zinc-air battery with neutral aqueous electrolyte[J]. J. Am. Chem. Soc., 2018, 140(50): 17624-17631.
[81] Wu Y, Li F, Chen W L, Xiang Q, Ma Y L, Zhu H, Tao P, Song C Y, Shang W, Deng T, Wu J B. Coupling interface constructions of MoS2/Fe5Ni4S8 heterostructures for efficient electrochemical water splitting[J]. Adv. Mater., 2018, 30(38): 1803151.
[82] Yu H Z, Xie Y Y, Deng L M, Huang H J, Song J N, Yu D S, Li L L, Peng S J. In situ construction of FeNi2Se4-FeNi LDH heterointerfaces with electron redistribution for enhanced overall water splitting[J]. Inorg. Chem. Front., 2022, 9(1): 146-154.
[83] Yin Z Z, He R Z, Zhang Y C, Feng L G, Wu X, Wägberg T, Hu G Z. Electrochemical deposited amorphous FeNi hydroxide electrode for oxygen evolution reaction[J]. J. Energy Chem., 2022, 69: 585-592.
[84] Shah S A, Ji Z Y, Shen X P, Yue X Y, Zhu G X, Xu K Q, Yuan A H, Ullah N, Zhu J, Song P, Li X Y. Thermal synthesis of FeNi@Nitrogen-doped graphene dispersed on nitrogen-doped carbon matrix as an excellent electrocatalyst for oxygen evolution reaction[J]. ACS Appl. Energ. Mater., 2019, 2(6): 4075-4083.
[85] Li X F, Ma D D, Cao C S, Zou R Q, Xu Q, Wu X T, Zhu Q L. Inlaying ultrathin bimetallic MOF nanosheets into 3D ordered macroporous hydroxide for superior electrocataly-tic oxygen evolution[J]. Small, 2019, 15(35): 1902218.
[86] Feng Y, Han H, Kim K M, Dutta S, Song T. Self-templated Prussian blue analogue for efficient and robust electrochemical water oxidation[J]. J. Catal., 2019, 369: 168-174.
[87] Gong M, Li Y G, Wang H L, Liang Y Y, Wu J Z, Zhou J G, Wang J, Regier T, Wei F, Dai H J. An advanced Ni-Fe layered double hydroxide electrocatalyst for water oxidation[J]. J. Am. Chem. Soc., 2013, 135(23): 8452-8455.
[88] Yu X W, Zhang M, Yuan W J, Shi G Q. A high-performance three-dimensional Ni-Fe layered double hydroxide/graphene electrode for water oxidation[J]. J. Mater. Chem. A, 2015, 3(13): 6921-6928.
[89] Li J X, Wang S L, Chang J F, Feng L G. A review of Ni based powder catalyst for urea oxidation in assisting water splitting reaction[J]. Adv. Powder. Mater., 2022, 1(3): 100030.
文章导航

/