欢迎访问《电化学(中英文)》期刊官方网站,今天是
综述

硅通孔内铜电沉积填充机理研究进展

  • 孙云娜 ,
  • 吴永进 ,
  • 谢东东 ,
  • 蔡涵 ,
  • 王艳 ,
  • 丁桂甫
展开
  • 1.上海交通大学, 微米纳米加工技术国家级重点实验室,上海 200240,中国
    2.上海交通大学电子信息与电气工程学院, 上海 200240,中国

收稿日期: 2022-02-18

  修回日期: 2022-03-28

  网络出版日期: 2022-04-16

Research Progress of Copper Electrodeposition Filling Mechanism in Silicon Vias

  • Yun-Na Sun ,
  • Yong-Jin Wu ,
  • Dong-Dong Xie ,
  • Han Cai ,
  • Yan Wang ,
  • Gui-Fu Ding
Expand
  • 1. National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Shanghai Jiao Tong University, Shanghai 200240, China
    2. School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
* Yun-Na Sun: (86-21)34670552, E-mail: Cecilia_Sun@sjtu.cn;
Gui-Fu Ding: Tel: (86-21)34206686, E-mail: gfding@sjtu.edu.cn

Received date: 2022-02-18

  Revised date: 2022-03-28

  Online published: 2022-04-16

摘要

上海交通大学多元兼容集成制造技术团队针对TSV互连的深孔填充电镀难题, 借助有限元软件和任意拉格朗日-欧拉算法, 完成了方程组的数值解算, 实现了TSV填充模式的数值仿真。利用有限元和任意拉格朗日-欧拉算法分析了盲孔的填充机制, 通孔的蝴蝶形式的电镀填充过程, 以及不同深宽比孔的同时填充模式,并利用仿真数据进行了样品的研制及参数优化。分析了电镀的电流密度和热处理温度对电镀填充TSV-Cu的力学属性的影响。通过原位压缩试验研究了电流密度对TSV-Cu的力学性能和显微组织的影响。利用单轴薄膜拉伸试验分析了热处理工艺对TSV-Cu材料属性的影响。结果表明, 随着热处理温度的升高, TSV-Cu的断裂强度和屈服强度明显下降, 杨氏模量呈波纹状变化但变化趋势缓慢。基于上述研究结果, 研究了热失配应力所导致的互连结构热变形机制, 通过自主搭建的原位测试系统,实时观测TSV-Cu随温度变化而产生的变形大小,以研究影响TSV-Cu互连热应力应变的规律。 结果表明, TSV-Cu 的热变形过程分为弹性变形阶段、类塑性强化阶段以及塑性变形阶段。

本文引用格式

孙云娜 , 吴永进 , 谢东东 , 蔡涵 , 王艳 , 丁桂甫 . 硅通孔内铜电沉积填充机理研究进展[J]. 电化学, 2022 , 28(7) : 2213001 . DOI: 10.13208/j.electrochem.2213001

Abstract

Aiming at the electroplating filling problem of deep via TSV (through silicon via) interconnection, the multi-compatible integrated manufacturing technology team at the Shanghai Jiao Tong University has completed the numerical solution of the equations and realized the numerical simulation of TSV filling mode by applying the finite element method with arbitrary Lagrange Euler algorithm. The filling mechanisms of blind vias, the butterfly filling form for the through vias and the simultaneous filling mode of vias with different aspect ratios are analyzed by simulation, contributing to the parameter optimization and sample manufacturing. The effects of electroplating current density and heat treatment temperature on the mechanical properties of electroplating filled TSV-Cu were investigated by in-situ compression test and uniaxial film tensile test. With the increase of heat treatment temperature, the fracture strength and yield strength decreased significantly, and the Young's modulus changed slowly in a corrugated shape. The influence of the current density was more complexed. Based on the above research results, the thermal deformation mechanism of interconnection structure caused by thermal mismatch stress was studied through the self-built in-situ testing system, which gives change in the real-time deformation of TSV-Cu with temperature. The results showed that the thermal deformation process can be divided into the elastic deformation stage, the quasi plastic strengthening stage and the plastic deformation stage.

参考文献

[1] Topper M, Baumgartner T, Klein M, Fritsch T, Reichl H. Low cost wafer-level 3-D integration without TSV: 2009 Electronic Components & Technology Conference, San Diego, May 26-29, 2009[C]. Piscataway: IEEE, 2009.
[2] Katti G, Stucchi M, De Meyer K, Dehaene W. Electrical modeling and characterization of through silicon via for three-dimensional ICs[J]. IEEE Trans. Electron Devices, 2010, 57(1): 256-262.
[3] Kondo K, Suzuki Y, Saito T, Okamoto N, Takauchi M. High speed through silicon via filling by copper electrodeposition[J]. Electrochem. Solid-State Lett., 2010, 13(5): D26-D28.
[4] Wang F, Liu X M, Liu J Z. Effect of stirring on the defect-free filling of deep through-silicon vias[J]. IEEE Access, 2020, 8: 108555-108560.
[5] Pak J S, Ryu C, Kim J. Electrical characterization of trough silicon via (TSV) depending on structural and material parameters based on 3D full wave simulation:2007 International Conference on Electronic Materials and Packaging, Daejeon, November 19-22 2007[C]. Piscataway: IEEE, 2007.
[6] Ho S, Yoon S W, Zhou Q, Pasad K, Lau J H. High RF performance TSV silicon carrier for high frequency application:2008 Electronic Components & Technology Conference, Lake Buena Vista, May 27-30, 2008[C]. Piscataway: IEEE, 2008.
[7] Frank T, Moreau S, Chappaz C, Leduc P, Arnaud L, Thuaire A, Chery E, Lorut F, Anghel L, Poupon G. Reliability of TSV interconnects: Electromigration, thermal cycling and impact on above metal level dielectric[J]. Microelectron. Reliab., 2013, 53(1): 17-29.
[8] Zhu Y, Bian Y, Xin S, Ma S, Jin Y F. Effect of additives on copper electroplating profile for TSV filling: Guilin,August 13-16, 2012[C]. Piscataway: IEEE, 2012.
[9] Josell D, Moffat T P. Extreme bottom-up filling of through silicon vias and damascene trenches with gold in a sulfite electrolyte[J]. J. Electrochem. Soc., 2013, 160(12): D3035-D3039.
[10] Jin S, Wang G, Yoo B. Through-silicon-via (TSV) filling by electrodeposition of Cu with pulse current at ultra-short duty cycle[J]. J. Electrochem. Soc., 2013, 160(12): D3300-D3305.
[11] Ryu S K, Lu K H, Zhang X F, Im J H, Ho P S, Huang R. Impact of near-surface thermal stresses on interfacial re-liability of through-silicon vias for 3D interconnects[J]. IEEE Trans. Device Mater. Reliab., 2011, 11(1): 35-43.
[12] Kuo C, Tsai H. Thermal stress analysis and failure mechanisms for through silicon via array:13th InterSociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems, San Diego, May 30-June 1, 2012[C]. Piscataway: IEEE, 2012.
[13] Sun Y N, Sun S, Zhang Y Z, Luo J B, Wang Y, Ding G F, Jin Y F. Initial thermal stress and strain effects on thermal mechanical stability of through silicon via[J]. Microelectron. Eng., 2016, 165: 11-19.
[14] Wang H Y, Cheng P, Wang S, Wang H, Gu T, Li J Y, Gu X, Ding G F. Effect of thermal treatment on the mechanical properties of Cu specimen fabricated using electrodeposition bath for through-silicon-via filling[J]. Microelectron. Eng., 2014, 114: 85-90.
[15] Wang H Y, Cheng P, Wang H, Liu R, Sun L M, Rao Q L, Wang Z Y, Gu T, Ding G F. Effect of current density on microstructure and mechanical property of Cu micro-cy-linders electrodeposited in through silicon vias[J]. Mater. Charact., 2015, 109: 164-172.
[16] Zhang Y Z, Sun Y N, Wang Y, Cheng P, Ding G F. Further research on the silicon via filling mechanism using an arbitrary lagrange-eulerian (ALE) method[J]. J. Electrochem. Soc., 2016, 163(2): D24-D32.
[17] Zhang Y Z, Sun Y N, Ding G F, Wang Y, Wang H, Cheng P. Numerical simulation and mechanism analysis of throu-gh-silicon via (TSV) filling using an arbitrary lagrange-eulerian (ALE) method[J]. J. Electrochem. Soc., 2015, 162(10): D540-D549.
[18] Zhang Y Z, Ding G F, Cheng P, Wang H. Numerical simulation and experimental verification of additive distribution in through-silicon via during copper filling process[J]. J. Electrochem. Soc., 2015, 162(1): D62-D67.
[19] Zhang Y Z. Study on the filling mechanism and technology of through via[D]. Shanghai: Shanghai Jiao Tong University, 2016.
[20] Wang Z Y, Wang H, Cheng P, Ding G F, Zhao X L. Simultaneous filling of through silicon vias (TSVS) with different aspect ratios using multi-step direct current density[J]. J. Micromech. Microeng., 2014, 24(8): 085013.
[21] Zhang Y Z, Wang H Y, Sun Y N, Wu K F, Wang H, Cheng P, Ding G F. Copper electroplating technique for efficient manufacturing of low-cost silicon interposers[J]. Microelectron. Eng., 2016, 150: 39-42.
[22] Luo J B, Wang G L, Sun Y N, Zhao X L, Ding G F. Fabrication and characterization of a low-cost interposer with an intact insulation layer and ultra-low TSV leakage current[J]. J. Micromech. Microeng., 2018, 28(12): 125010.
[23] Wang M, Cheng P, Li J H, Wang Y, Wang H, Ding G F, Zhao X L. Fabrication and performances of a novel copper-ordered-reinforced polymer composite interposer[J]. J. Micromech. Microeng., 2014, 24(2): 025016.
[24] Liu Y M, Sun Y N, Wang Y, Ding G F, Sun B, Zhao X L. A complex reinforced polymer interposer with ordered Ni grid and SiC nano-whiskers polyimide composite based on micromachining technology[J]. Electron. Mater. Lett., 2017, 13(1): 29-36.
[25] Wang H Y, Cheng P, Wang S, Wang H, Gu T, Li J Y, Gu X, Ding G F. Effect of thermal treatment on the mechanical properties of Cu specimen fabricated using electrodeposition bath for through-silicon-via filling[J]. Microelectron. Eng., 2014, 114: 85-90.
[26] Sun Y N, Wang B, Wang H Y, Wu K F, Yang S Y, Wang Y, Ding G F. In-situ measurement on TSV-Cu deformation with hotplate system based on sheet resistance[J]. Mater. Res. Express, 2017, 4(12): 125003.
文章导航

/