欢迎访问《电化学(中英文)》期刊官方网站,今天是
论文

一步固相法合成锂离子电池高镍层状正极材料

  • 王京玥 ,
  • 王睿 ,
  • 王诗琦 ,
  • 王立帆 ,
  • 詹纯
展开
  • 北京科技大学冶金与生态工程学院储能科学与工程系, 北京 100083

收稿日期: 2021-12-13

  修回日期: 2022-01-11

  网络出版日期: 2022-03-04

Facile One-Step Solid-State Synthesis of Ni-Rich Layered Oxide Cathodes for Lithium-Ion Batteries

  • Jing-Yue Wang ,
  • Rui Wang ,
  • Shi-Qi Wang ,
  • Li-Fan Wang ,
  • Chun Zhan
Expand
  • Department of Energy Storage Science and Technology, School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing 100083, China
* Tel: (86-10)62332358, E-mail: wanglifanustb@163.com;
zhanchun@ustb.edu.cn

Received date: 2021-12-13

  Revised date: 2022-01-11

  Online published: 2022-03-04

摘要

高镍层状正极材料因其比容量高进而满足电动汽车的续航要求,是锂离子电池中占主导地位的正极材料之一。通常,商业化的高镍层状氧化物是由共沉淀前驱体合成的,而在共沉淀过程中需要对温度、 pH、 搅拌速率等条件的精确控制,以确保镍、钴和锰等阳离子的原子级混合。本文采用了简单的一步固相法成功合成了超高镍含量的层状氧化物材料。通过使用与目标产物具有相似层状结构的前驱体氢氧化镍,成功合成了LiNiO2和LiNixCoyO2 (x = 0.85, 0.9, 0.95; x + y = 1),其电化学性能可与共沉淀前驱体制备的高镍材料相媲美。通过XRD和XPS测试证实了Co掺杂到LiNiO2中,并抑制了高镍氧化物中的锂镍混排。掺杂剂Co在提高高镍材料的放电容量、倍率性能和循环性能方面具有明显的优势。一步固相法为未来制备下一代高性能超高镍锂离子正极材料提供了一种简单有效制备方法。

本文引用格式

王京玥 , 王睿 , 王诗琦 , 王立帆 , 詹纯 . 一步固相法合成锂离子电池高镍层状正极材料[J]. 电化学, 2022 , 28(8) : 2112131 . DOI: 10.13208/j.electrochem.211213

Abstract

Nickel-rich layered oxide is one of the dominate cathode materials in the lithium ion batteries, due to its high specific energy density meeting the range requirement of the electric vehicles. Typically, the commercial Ni-rich layered oxides are synthesized from co-precipitated precursors, while precision control is required in the co-precipitation process to ensure the atomic level mixing of the cations such as Ni, Co and Mn, et.al. In this work, a one-step solid-state method was successfully applied to synthesize the Ni-rich layered oxide materials with ultra-high Ni content. By choosing the nickel hydroxides as the precursor with layered structure similar to the targeting product, we successfully synthesized LiNiO2 (LNO) and LiNixCoyO2(x = 0.85, 0.9, 0.95; x + y = 1) with the electrochemical performance comparable to NCM prepared from precipitated precursors. It was confirmed by XRD and XPS that Co is doped into LNO and suppresses the Li+/Ni2+ mixing in Ni-rich oxides. The Co dopant exhibits a noticeable advantage in improving the discharge capacity, rate performance and cycle performance. This work provides some perspective that the one-step solid-state method is a promising approach to prepare high-energy ultrahigh-Ni layered oxide cathodes.

参考文献

[1] Liu Y Y, Zhu Y Y, Cui Y. Challenges and opportunities towards fast-charging battery materials[J]. Nat. Energy, 2019, 4(7): 540-550.
[2] Cano Z P, Banham D, Ye S Y, Hintennach A, Lu J, Fowler M, Chen Z W. Batteries and fuel cells for emerging electric vehicle markets[J]. Nat. Energy, 2018, 3(4): 279-289.
[3] Goodenough J B, Kim Y. Challenges for rechargeable Li batteries[J]. Chem. Mater., 2010, 22(3): 587-603.
[4] Liu A R, Zhang N, Stark J E, Arab P, Li H Y, Dahn J R. Synthesis of Co-free Ni-rich single crystal positive electrode materials for lithium ion batteries: Part I. two-step lithiation method for Al- or Mg-doped LiNiO2[J]. J. Electrochem. Soc., 2021, 168(4): 040531.
[5] Bianchini M, Roca-Ayats M, Hartmann P, Brezesinski T, Janek J. There and back again- the journey of LiNiO2 as a cathode active material[J]. Angew. Chem.-Int. Edit., 2019, 58(31): 10434-10458.
[6] Myung S T, Maglia F, Park K J, Yoon C S, Lamp P, Kim S J, Sun Y K. Nickel-rich layered cathode materials for automotive lithium-ion batteries: achievements and perspectives[J]. ACS Energy Lett., 2017, 2(1): 196-223.
[7] Sun H H, Ryu H H, Kim U H, Weeks J A, Heller A, Sun Y K, Mullins C B. Beyond doping and coating: prospective strategies for stable high-capacity layered Ni-rich cathodes[J]. ACS Energy Lett., 2020, 5(4): 1136-1146.
[8] Zhang H L, Omenya F, Yan P F, Luo L L, Whittingham M S, Wang C M, Zhou G W. Rock-salt growth-induced (003) cracking in a layered positive electrode for Li-ion batteries[J]. ACS Energy Lett., 2017, 2(11): 2607-2615.
[9] Li H Y, Cormier M, Zhang N, Inglis J, Li J, Dahn J R. Is cobalt needed in Ni-rich positive electrode materials for lithium ion batteries?[J]. J. Electrochem. Soc., 2019, 166(4): A429-A439.
[10] Cormier M M E, Zhang N, Liu A, Li H Y, Inglis J, Dahn J R. Impact of dopants (Al, Mg, Mn, Co) on the reactivity of LixNiO2 with the electrolyte of Li-ion batteries[J]. J. Electrochem. Soc., 2019, 166(13): A2826-A2833.
[11] Dahn J R, Fuller E W, Obrovac M, Vonsacken U. Thermal stability of LixCoO2, LixNiO2 and λ-MnO2 and consequences for the safety of Li-ion cells[J]. Solid State Ion., 1994, 69(3-4): 265-270.
[12] Shannon R D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides[J]. Acta Crystallogr. Sect. A, 1976, 32(5): 751-767.
[13] Radin M D, Hy S, Sina M, Fang C C, Liu H D, Vinckeviciute J, Zhang M H, Whittingham M S, Meng Y S, Van der Ven A. Narrowing the gap between theoretical and practical capacities in Li-ion layered oxide cathode materials[J]. Adv. Energy Mater, 2017, 7(20): 1602888.
[14] Kim J, Lee H, Cha H, Yoon M, Park M, Cho J. Prospect and reality of Ni-rich cathode for commercialization[J]. Adv. Energy Mater, 2018, 8(6): 1702028.
[15] Delmas C, Pérès J P, Rougier A, Demourgues A, Weill F, Chadwick A, Broussely M, Perton F, Biensan P, Willmann P. On the behavior of the LixNiO2 system: an electrochemical and structural overview[J]. J. Power Sources, 1997, 68(1): 120-125.
[16] Rougier A, Gravereau P, Delmas C. Optimization of the composition of the Li1-zNi1+zO2 electrode materials: structural, magnetic, and electrochemical studies[J]. J. Electro-chem. Soc., 1996, 143(4): 1168-1175.
[17] Liu A, Zhang N, Li H Y, Inglis J, Wang Y Q, Yin S, Wu H H, Dahn J R. Investigating the effects of magnesium doping in various Ni-rich positive electrode materials for lithium ion batteries[J]. J. Electrochem. Soc., 2019, 166(16): A4025-A4033.
[18] Yoon C S, Choi M J, Jun D W, Zhang Q, Kaghazchi P, Kim K H, Sun Y K. Cation ordering of Zr-doped LiNiO2 cathode for lithium-ion batteries[J]. Chem. Mater., 2018, 30(5): 1808-1814.
[19] Mu L Q, Zhang R, Kan W H, Zhang Y, Li L X, Kuai C G, Zydlewski B, Rahman M M, Sun C J, Sainio S, Avdeev M, Nordlund D, Xin H L L, Lin F. Dopant distribution in Co-free high-energy layered cathode materials[J]. Chem. Mater., 2019, 31(23): 9769-9776.
[20] Delmas C, Braconnier J J, Fouassier C, Hagenmuller P. Electrochemical intercalation of sodium in NaxCoO2 bronzes[J]. Solid State Ion., 1981, 3-4(8): 165-169.
[21] Guilmard M, Rougier A, Grüne A, Croguennec L, Delmas C. Effects of aluminum on the structural and electrochemical properties of LiNiO2[J]. J. Power Sources, 2003, 115(2): 305-314.
[22] Albrecht S, Kümpers J, Kruft M, Malcus S, Vogler C, Wahl M, Wohlfahrt-Mehrens M. Electrochemical and thermal behavior of aluminum- and magnesium-doped spherical lithium nickel cobalt mixed oxides Li1-x(Ni1-y-z-CoyMz)O2 (M = Al, Mg)[J]. J. Power Sources, 2003, 119: 178-183.
[23] Kim J, Cha H Y, Lee H Y, Oh P, Cho J H. Surface and interfacial chemistry in the nickel-rich cathode materials[J]. Batteries Supercaps, 2020, 3(4): 309-322.
[24] Aricò A S, Bruce P, Scrosati B, Tarascon J M, van Scha-lkwijk W. Nanostructured materials for advanced energy conversion and storage devices[J]. Nat. Mater., 2005, 4(5): 366-377.
[25] Zheng L T, Bennett J C, Obrovac M N. All-dry synthesis of single crystal NMC cathode materials for Li-ion batteries[J]. J. Electrochem. Soc., 2020, 167(13): 130536.
[26] Ohzuku T, Ueda A, Nagayama M. Electrochemistry and structural chemistry of LiNiO2 (Rm) for 4 volt secondary lithium cells[J]. J. Electrochem. Soc., 1993, 140(7): 1862-1870.
[27] Zhou F, Zhao X M, van Bommel A, Rowe A W, Dahn J R. Coprecipitation synthesis of NixMn1-x(OH)2 mixed hydroxides[J]. Chem. Mater., 2010, 22(3): 1015-1021.
[28] Kim Y, Kim D. Synthesis of high-density nickel cobalt aluminum hydroxide by continuous coprecipitation me-thod[J]. ACS Appl. Mater. Interfaces, 2012, 4(2): 586-589.
[29] Luo W B, Dahn J R. Preparation of Co1-zAlz(OH)2(NO3)z layered double hydroxides and Li(Co1-zAlz)O2[J]. Chem. Mater., 2009, 21(1): 56-62.
[30] Zhao M Q, Zhang Q, Huang J Q, Wei F. Hierarchical nanocomposites derived from nanocarbons and layered double hydroxides-properties, synthesis, and applications[J]. Adv. Funct. Mater., 2012, 22(4): 675-694.
[31] Kanno R, Kubo H, Kawamoto Y, Kamiyama T, Izumi F, Takeda Y, Takano M. Phase relationship and lithium deintercalation in lithium nickel oxides[J]. J. Solid State Chem., 1994, 110(2): 216-225.
[32] Weigel T, Schipper F, Erickson E M, Susai F A, Markov-sky B, Aurbach D. Structural and electrochemical aspects of LiNi0.8Co0.1Mn0.1O2 cathode materials doped by various cations[J]. ACS Energy Lett., 2019, 4(2): 508-516.
[33] Li W D, Erickson E M, Manthiram A. High-nickel layered oxide cathodes for lithium-based automotive batteries[J]. Nat. Energy., 2020, 5(1): 26-34.
[34] Lee E J, Chen Z H, Noh H J, Nam S C, Kang S, Kim D H, Amine K, Sun Y K. Development of microstrain in aged lithium transition metal oxides[J]. Nano Lett., 2014, 14(8): 4873-4880.
[35] Li J, Harlow J, Stakheiko N, Zhang N, Paulsen J, Dahn J. Dependence of cell failure on cut-off voltage ranges and observation of kinetic hindrance in LiNi0.8Co0.15Al0.05O2[J]. J. Electrochem. Soc., 2018, 165(11): A2682-A2695.
[36] Gilbert J A, Bareño J, Spila T, Trask S E, Miller D J, Polzin B J, Jansen A N, Abraham D P. Cycling behavior of NCM523/graphite lithium-ion cells in the 3-4.4 V range: diagnostic studies of full cells and harvested electrodes[J]. J. Electrochem. Soc., 2017, 164(1): A6054-A6065.
文章导航

/