电输运谱在原位电化学界面测量应用中的最新进展
收稿日期: 2021-11-01
修回日期: 2021-12-31
网络出版日期: 2022-01-10
版权
Recent Advances in Electrical Transport Spectroscopy for the in Situ Measurement of Electrochemical Interfaces
Received date: 2021-11-01
Revised date: 2021-12-31
Online published: 2022-01-10
Copyright
电化学/电催化技术是实现能源高效转化与储存的重要手段,并已经发展成为一个国际前沿领域。如今日渐深入的电催化研究开始要求更精确且多维度的电化学界面信息,从而指导实现电化学体系的优化,而这往往依赖于一些原位表征方法的发展和应用。电输运谱(electrical transport spectroscopy,ETS)是一种新兴的基于芯片平台的电化学原位表征技术,它可以实现电势扫描条件下电化学信号和电极材料电输运性质的同时获取。本文首先介绍了基于铂纳米线微纳器件的ETS信号原理(吸附现象导致的表面电子散射)和器件制作流程、几个典型电催化反应过程中铂表面状态的演变,以及电解质离子竞争吸附对铂催化氧还原反应动力学过程的影响。由于与电化学体系的高度匹配,ETS可应用于不同结构及金属类型材料体系(金和铂纳米颗粒)。金和铂表现出显著不同的离子吸附现象,尤其是对于弱吸附离子(高氯酸根和硫酸根)。通过电输运谱还可实时监测电化学过程中材料的相变及电子性质的变化。于是,ETS可被用于监测和实现二维材料电化学可控插层,理解电催化剂在电催化过程中的相变机制以及相变过程如何影响电催化活性,揭示二维半导体催化剂材料电催化过程的自门控效应。此外,ETS还被应用于生物电化学体系,探索电化学过程中的细胞导电机制。最后,本文对ETS的优点及不足进行总结,展望了ETS在未来电化学领域所面临的挑战和机遇。
穆张岩 , 丁梦宁 . 电输运谱在原位电化学界面测量应用中的最新进展[J]. 电化学, 2022 , 28(3) : 2108491 . DOI: 10.13208/j.electrochem.210849
Electrochemical/electrocatalytic technology has played a central role in achieving highly efficient energy conversion and storage. To date, the in-depth electrochemical research begins to require accurate and multi-dimensional information of electrochemical interfaces, which usually relies on the application of in situ characterizations. Electrical transport spectroscopy (ETS) is a newly developed measurement strategy based on chip-platform, and provides in situ information of electrochemical interfaces from a novel perspective due to a signal origin that is fundamentally different from typical spectroscopic and electrochemical techniques. In this tutorial review, the working principle and experimental setup of ETS are described in detail with the demonstration of several model electrocatalytic materials, including metal nanoparticle/nanowires, two-dimensional layered materials, nickel based hydroxide/oxyhydroxides and dissimilatory metal-reducing bacteria. The advantages of ETS are summarized, and the future challenges and opportunities that ETS faces are also prospected.
[1] | Motobayashi K, Osawa M. Recent advances in spectroscopic investigations on ionic liquid/electrode interfaces[J]. Curr. Opin. Electrochem., 2018, 8:147-155. |
[2] | Zhu Y P, Wang J L, Chu H, Chu Y C, Chen H M. In situ/operando studies for designing next-generation electrocatalysts[J]. ACS Energy Lett., 2020, 5(4):1281-1291. |
[3] | Deng Y L, Yeo B S. Characterization of electrocatalytic water splitting and CO2 reduction reactions using in situ/operando Raman spectroscopy[J]. ACS Catal., 2017, 7(11):7873-7889. |
[4] | Timoshenko J, Cuenya B R. In situ/operando electrocatalyst characterization by X-ray absorption spectroscopy[J]. Chem. Rev., 2021, 121(2):882-961. |
[5] | Yang K L, Kas R, Smith W A. In situ infrared spectroscopy reveals persistent alkalinity near electrode surfaces during CO2 electroreduction[J]. J. Am. Chem. Soc., 2019, 141(40):15891-15900. |
[6] | Polcari D, Dauphin-Ducharme P, Mauzeroll J. Scanning electrochemical microscopy: A comprehensive review of experimental parameters from 1989 to 2015[J]. Chem. Rev., 2016, 116(22):13234-13278. |
[7] | Hui F, Lanza M. Scanning probe microscopy for advanced nanoelectronics[J]. Nat. Electron., 2019, 2(6):221-229. |
[8] | Meddings N, Heinrich M, Overney F, Lee J S, Ruiz V, Napolitano E, Seitz S, Hinds G, Raccichini R, Gabers M, Park J. Application of electrochemical impedance spectroscopy to commercial Li-ion cells: A review[J]. J. Power Sources, 2020, 480:228742. |
[9] | Pajkossy T, Jurczakowski R. Electrochemical impedance spectroscopy in interfacial studies[J]. Curr. Opin. Electro-chem., 2017, 1(1):53-58. |
[10] | Ding M N, He Q Y, Wang G M, Cheng H C, Huang Y, Duan X F. An on-chip electrical transport spectroscopy approach for in situ monitoring electrochemical interfaces[J]. Nat. Commun., 2015, 6:7867. |
[11] | Ding M N, Liu Y, Wang G M, Zhan Z P, Yin A X, He Q Y, Huang Y, Duan X F. Highly sensitive chemical detection with tunable sensitivity and selectivity from ultrathin platinum nanowires[J]. Small, 2017, 13(5):1602969. |
[12] | Yang F, Donavan K C, Kung S C, Penner R M. The surface scattering-based detection of hydrogen in air using a platinum nanowire[J]. Nano Lett., 2012, 12(6):2924-2930. |
[13] | Sondheimer E H. The mean free path of electrons in metals[J]. Adv. Phys., 2001, 50(6):499-537. |
[14] | Climent V, Feliu J M. Thirty years of platinum single crystal electrochemistry[J]. J. Solid State Electrochem., 2011, 15(7-8):1297-1315. |
[15] | Wang P T, Zhang X, Zhang J, Wan S, Guo S J, Lu G, Yao J L, Huang X Q. Precise tuning in platinum-nickel/nickel sulfide interface nanowires for synergistic hydrogen evolution catalysis[J]. Nat. Commun., 2017, 8:14580. |
[16] | Reier T, Oezaslan M, Strasser P. Electrocatalytic oxygen evolution reaction (OER) on Ru, Ir, and Pt catalysts: A comparative study of nanoparticles and bulk materials[J]. ACS Catal., 2012, 2(8):1765-1772. |
[17] | Fukuzumi S, Yamada Y, Karlin K D. Hydrogen peroxide as a sustainable energy carrier: electrocatalytic production of hydrogen peroxide and the fuel cell[J]. Electrochim. Acta, 2012, 82:493-511. |
[18] | Chang X, Batchelor-McAuley C, Compton R G. Hydrogen peroxide reduction on single platinum nanoparticles[J]. Chem. Sci., 2020, 11(17):4416-4421. |
[19] | Ali A, Shen P K. Recent advances in graphene-based platinum and palladium electrocatalysts for the methanol oxidation reaction[J]. J. Mater. Chem. A, 2019, 7(39):22189-22217. |
[20] | Ferre-Vilaplana A, Perales-Rondón J V, Feliu J M, Herrero E. Understanding the effect of the adatoms in the formic acid oxidation mechanism on Pt(111) electrodes[J]. ACS Catal., 2014, 5(2):645-654. |
[21] | Banerjee S, Zhang Z Q, Hall A S, Thoi V S. Surfactant perturbation of cation interactions at the electrode-electrolyte interface in carbon dioxide reduction[J]. ACS Catal., 2020, 10(17):9907-9914. |
[22] | Cho M, Song J T, Back S, Jung Y, Oh J. The role of adsorbed CN and Cl on an Au electrode for electrochemical CO2 reduction[J]. ACS Catal., 2018, 8(2):1178-1185. |
[23] | Huang J E, Li F W, Ozden A, Rasouli A S, de Arquer F P G, Liu S J, Zhang S Z, Luo M C, Wang X, Lum Y W, Xu Y, Bertens K, Miao R K, Dinh C T, Sinton D, Sargent E H. CO2 electrolysis to multicarbon products in strong acid[J]. Science, 2021, 372(6546):1074-1078. |
[24] | Dubouis N, Serva A, Berthin R, Jeanmairet G, Porcheron B, Salager E, Salanne M, Grimaud A. Tuning water reduction through controlled nanoconfinement within an organic liquid matrix[J]. Nat. Catal., 2020, 3(8):656-663. |
[25] | Ding M, Zhong G Y, Zhao Z P, Huang Z H, Li M F, Shiu H Y, Liu Y, Shakir I, Huang Y, Duan X F. On-chip in situ monitoring of competitive interfacial anionic chemi-sorption as a descriptor for oxygen reduction kinetics[J]. ACS Cent. Sci., 2018, 4(5):590-599. |
[26] | Mu Z Y, Yang M, He W, Pan Y H, Zhang P K, Li X F, Wu X J, Ding M N. On-chip electrical transport investigation of metal nanoparticles: Characteristic acidic and alkaline adsorptions revealed on Pt and Au surface[J]. J. Phys. Chem. Lett., 2020, 11(14):5798-5806. |
[27] | Valter M, Busch M, Wickman B, Grönbeck H, Baltrusaitis J, Hellman A. Electrooxidation of glycerol on gold in acidic medium: A combined experimental and DFT study[J]. J. Phys. Chem. C, 2018, 122(19):10489-10494. |
[28] | Liu Y, Weiss N O, Duan X D, Cheng H C, Huang Y, Duan X F. Van der Waals heterostructures and devices[J]. Nat. Rev. Mater., 2016, 1(9):16042. |
[29] | Liu Y, Huang Y, Duan X F. Van der Waals integration before and beyond two-dimensional materials[J]. Nature, 2019, 567(7748):323-333. |
[30] | He Q Y, Lin Z Y, Ding M N, Yin A X, Halim U, Wang C, Liu Y, Cheng H C, Huang Y, Duan X F. In situ probing molecular intercalation in two-dimensional layered semiconductors[J]. Nano Lett., 2019, 19(10), 6819-6826. |
[31] | Zhang J S, Yang A K, Wu X, van de Groep J, Tang P Z, Liu S R, Liu B F, Shi F F, Wan J Y, Li Q T, Sun Y M, Lu Z Y, Zheng X L, Zhou G M, Wu C L, Zhang S C, Brongersma M L, Li J, Cui Y. Reversible and selective ion intercalation through the top surface of few-layer MoS2[J]. Nat. Commun., 2018, 9:5289. |
[32] | He W, Zang H, Cai S H, Mu Z Y, Liu C, Ding M N, Wang P, Wang X R. Intercalation and hybrid heterostructure integration of two-dimensional atomic crystals with functional organic semiconductor molecules[J]. Nano Res., 2020, 13(11):2917-2924. |
[33] | Yu X Y, Feng Y, Guan B Y, Lou X W, Paik U. Carbon coated porous nickel phosphides nanoplates for highly efficient oxygen evolution reaction[J]. Energy Environ. Sci., 2016, 9(4):1246-1250. |
[34] | Tian B L, Shin H, Liu S T, Fei M C, Mu Z Y, Liu C, Pan Y H, Sun Y M, Goddard W A, Ding M N. Double exchange induced in situ conductivity in nickel based oxyhydroxides: An effective descriptor for electrocatalytic oxygen evolution[J]. Angew.Chem. Int. Ed., 2021, 60(30):16448-16456. |
[35] | Bediako D K, Lassalle-Kaiser B, Surendranath Y, Yano J, Yachandra V K, Nocera D G. Structure-activity correlations in a nickel-borate oxygen evolution catalyst[J]. J. Am. Chem. Soc., 2012, 134(15):6801-6809. |
[36] | de Gennes P G. Effects of double exchange in magnetic crystals[J]. Phys. Rev., 1960, 118(1):141-154. |
[37] | Nitopi S, Bertheussen E, Scott S B, Liu X Y, Engstfeld A K, Horch S, Seger B, Stephens I E L, Chan K, Hahn C, Nørskov J K, Jaramillo T F, Chorkendorff I. Progress and perspectives of electrochemical CO2 reduction on copper in aqueous electrolyte[J]. Chem. Rev., 2019, 119(12):7610-7672. |
[38] | Cao C S, Ma D D, Gu J F, Xie X Y, Zeng G, Li X F, Han S G, Zhu Q L, Wu X T, Xu Q. Metal-organic layers leading to atomically thin bismuthene for efficient carbon dioxide electroreduction to liquid fuel[J]. Angew. Chem. Int. Ed., 2020, 59(35):15014-15020. |
[39] | Yang H, Han N, Deng J, Wu J H, Wang Y, Hu Y P, Ding P, Li Y F, Li Y G, Lu J. Selective CO2 reduction on 2D mesoporous Bi nanosheets[J]. Adv. Energy Mater., 2018, 8(35):1801536. |
[40] | Zhou Y, Liu S T, Gu Y M, Wen G H, Ma J, Zuo J L, Ding M N. In(III) metal-organic framework incorporated with enzyme-mimicking nickel bis(dithiolene) ligand for highly selective CO2 electroreduction[J]. J. Am. Chem. Soc., 2021, 143(35):14071-14076. |
[41] | Liu S T, Wang C, Wu J H, Tian B L, Sun Y M, Lv Y, Mu Z Y, Sun Y X, Li X S, Wang F Y, Wang Y Q, Tang L Y, Wang P, Li Y F, Ding M N. Efficient CO2 electroreduction with a monolayer Bi2WO6 through a metallic intermediate surface state[J]. ACS Catal., 2021, 11(20):12476-12484. |
[42] | Chen W, Xie C, Wang Y Y, Zou Y Q, Dong C L, Huang Y C, Xiao Z H, Wei Z X, Du S Q, Chen C, Zhou B, Ma J M, Wang S Y. Activity origins and design principles of nickel-based catalysts for nucleophile electrooxidation[J]. Chem, 2020, 6(11):2974-2993. |
[43] | Wang H Y, Hung S F, Chen H Y, Chan T S, Chen H M, Liu B. In operando identification of geometrical-site-dependent water oxidation activity of spinel Co3O4[J]. J. Am. Chem. Soc., 2016, 138(1):36-39. |
[44] | Gerischer H. Charge transfer processes at semiconductor-electrolyte interfaces in connection with problems of catalysis[J]. Surf. Sci., 1969, 18(1):97-122. |
[45] | Bisri S Z, Shimizu S, Nakano M, Iwasa Y. Endeavor of iontronics: From fundamentals to applications of ion-con-trolled electronics[J]. Adv. Mater., 2017, 29(25):1607054. |
[46] | Marcus R A. On the theory of oxidation-reduction reactions involving electron transfer. I[J]. J. Chem. Phys., 2004, 26(4):867-871. |
[47] | He Y M, He Q Y, Wang L Q, Zhu C, Golani P, Handoko A D, Yu X C, Gao C T, Ding M N, Wang X W, Liu F C, Zeng Q S, Yu P, Guo S S, Yakobson B I, Wang L, Seh Z W, Zhang Z H, Wu M H, Wang Q J, Zhang H, Liu Z. Self-gating in semiconductor electrocatalysis[J]. Nat. Mater., 2019, 18(10):1098-1104. |
[48] | Nealson K H, Saffarini D. Iron and manganese in anaerobic respiration: Environmental significance, physiology, and regulation[J]. Annu. Rev. Microbiol., 1994, 48:311-343. |
[49] | Fredrickson J K, Romine M F, Beliaev A S, Auchtung J M, Driscoll M E, Gardner T S, Nealson K H, Osterman A L, Pinchuk G, Reed J L, Rodionov D A, Rodrigues J L M, Saffarini D A, Serres M H, Spormann A M, Zhulin I B, Tiedje J M. Towards environmental systems biology of Shewanella[J]. Nat. Rev. Microbiol., 2008, 6(8):592-603. |
[50] | Rabaey K, Rozendal R A. Microbial electrosynjournal-revisiting the electrical route for microbial production[J]. Nat. Rev. Microbiol., 2010, 8(10):706-716. |
[51] | Ding M N, Shiu H Y, Li S L, Lee C K, Wang G M, Wu H, Weiss N O, Young T D, Weiss P S, Wong G C L, Nealson K H, Huang Y, Duan X F. Nanoelectronic investigation reveals the electrochemical basis of electrical conductivity in Shewanella and Geobacter[J]. ACS Nano, 2016, 10(11):9919-9926. |
[52] | Gao D F, Soholten F, Cuenya B R. Improved CO2 electroreduction performance on plasma-activated Cu catalysts via electrolyte design: Halide effect[J]. ACS Catal., 2017, 7(8):5112-5120. |
[53] | Wahab O J, Kang M, Unwi P R. Scanning electrochemical cell microscopy: A natural technique for single entity electrochemistry[J]. Curr. Opin. Electrochem., 2020, 22:120-128. |
[54] | Zhang J, Wu J J, Guo H, Chen W B, Yuan J T, Martinez U, Gupta G, Mohite A, Ajayan P M, Lou J. Unveiling active sites for the hydrogen evolution reaction on monolayer MoS2[J]. Adv. Mater., 2017, 29(42):1701955. |
[55] | Inkpen M S, Liu Z F, Li H X, Campos L M, Neaton J B, Venkataraman L. Non-chemisorbed gold-sulfur binding prevails in self-assembled monolayers[J]. Nat. Chem., 2019, 11(4):351-358. |
[56] | Gongding J J. Single entity electrochemistry progresses to cell counting[J]. Angew. Chem. Int. Ed., 2016, 55(42):12956-12958. |
[57] | Liu C, Gallagher J J, Sakimoto K K, Nichols E M, Chang C J, Chang M C Y, Yang P D. Nanowire-bacteria hybrids for unassisted solar carbon dioxide fixation to value-added chemicals[J]. Nano Lett., 2015, 15(5):3634-3639. |
[58] | Nevin K P, Woodard T L, Franks A E, Summers Z M, Lovley D R. Microbial electrosynjournal: feeding microbes electricity to convert carbon dioxide and water to multicarbon extracellular organic compounds[J]. 2010, mBio, 1(2):e00103-10. |
[59] | Tian B Z, Lieber C M. Nanowired bioelectric interfaces[J]. Chem. Rev., 2019, 119(15):9136-9152. |
[60] | Patolsky F, Zheng G F, Lieber C M. Fabrication of silicon nanowire devices for ultrasensitive, label-free, real-time detection of biological and chemical species[J]. Nat. Protoc., 2006, 1(4):1711-1724. |
[61] | Tian B Z, Liu J, Dvir T, Jin L H, Tsui J H, Qing Q, Suo Z G, Langer R, Kohane D S, Lieber C M. Macroporous nanowire nanoelectronic scaffolds for synthetic tissues[J]. Nat. Mater., 2012, 11(11):986-994. |
[62] | Patolsky F, Timko B P, Yu G H, Fang Y, Greytak A B, Zheng G F, Lieber C M. Detection, stimulation, and inhibition of neuronal signals with high-density nanowire transistor arrays[J]. Science, 2006, 313(5790):1100-1104. |
[63] | Li T X, Liang Y Q, Li J H, Yu Y, Xiao M M, Ni W, Zhang Z Y, Zhang G J. Carbon nanotube field-effect transistor biosensor for ultrasensitive and label-free detection of breast cancer exosomal miRNA21[J]. Anal. Chem., 2021, 93(46):15501-15507. |
[64] | Tian B Z, Cohen-Karni T, Qing Q, Duan X J, Xie P, Lieber C M. Three-dimensional, flexible nanoscale field-effect transistors as localized bioprobes[J]. Science, 2010, 329(5993):830-834. |
[65] | Jenkins E P W, Finch A, Gerigk M, Triantis I F, Watts C, Malliaras G G. Electrotherapies for glioblastoma[J]. Adv. Sci., 2021, 8(18):2100978. |
[66] | Yu R J, Ying Y L, Gao R, Long Y T. Confined nanopipette sensing: From single molecules, single nanoparticles, to single cells[J]. Angew. Chem. Int. Ed., 2019, 58(12):3706-3714. |
/
〈 |
|
〉 |