电化学理论模拟方法的发展及其在铂基燃料电池中的应用
收稿日期: 2021-11-04
修回日期: 2021-12-21
网络出版日期: 2022-01-02
版权
Recent Advances in Electrochemical Kinetics Simulations and Their Applications in Pt-based Fuel Cells
Received date: 2021-11-04
Revised date: 2021-12-21
Online published: 2022-01-02
Copyright
电化学中的理论计算模拟对于从原子水平理解电化学过程中的机制至关重要,它可以弥补许多实验上无法解释的现象,如果能在原子尺度上确定理解反应的活性中心,得到电极或电催化剂结构的演变过程,建立反应的微观机理,从根本上解决电极氧化和腐蚀的问题,提高电化学催化剂的活性和稳定性,从而设计更高效的电催化剂。然而,电化学的理论计算模拟中仍然存在诸多问题,例如,溶剂化效应的实现、电极/电解质(金属/溶液)界面之间合适的模拟模型和方法、电化学过程中的结构演化以及如何降低结构计算的计算代价等。在这里,我们回顾了电化学建模方法的最新进展以及我们小组通过使用修正的泊松-玻尔兹曼连续介质溶剂化模型模拟溶剂化效应对溶剂化效应和模型进行改进。同时为了减少计算代价,我们更关注机器学习在电化学模拟中的应用,主要分为两个部分,即通过快速对多种不同组分的能量进行计算并筛选出合适组分,但是无法得到实际的结构演变情况。另一个是通过快速结构取样得到不同组分不同的结构变化能够更为直观的获得结构的演变过程,从而揭示反应的机理。我们以本课题组开发的SSW-NN的方法为例,总结了基于机器学习的原子模拟在电化学方面的应用,介绍了SSW-NN,模拟电化学反应条件下电极和电催化剂的氧化和腐蚀,并阐明了催化剂结构的活性和稳定性。
李吉利 , 李晔飞 , 刘智攀 . 电化学理论模拟方法的发展及其在铂基燃料电池中的应用[J]. 电化学, 2022 , 28(2) : 2108511 . DOI: 10.13208/j.electrochem.210851
Theoretical simulations of electrocatalysis are vital for understanding the mechanism of the electrochemical process at the atomic level. It can help to reveal the in-situ structures of electrode surfaces and establish the microscopic mechanism of electrocatalysis, thereby solving the problems such as electrode oxidation and corrosion. However, there are still many problems in the theoretical electrochemical simulations, including the solvation effects, the electric double layer, and the structural transformation of electrodes. Here we review recent advances of theoretical methods in electrochemical modeling, in particular, the double reference approach, the periodic continuum solvation model based on the modified Poisson-Boltzmann equation (CM-MPB), and the stochastic surface walking method based on the machine learning potential energy surface (SSW-NN). The case studies of oxygen reduction reaction by using CM-MPB and SSW-NN are presented.
Key words: CM-MPB; machine learning; SSW; LASP
[1] | Yang Z G, Zhang J L, Kintner-Meyer M C W, Lu X C, Choi D, Lemmon J P, Liu J. Electrochemical energy storage for green grid[J]. Chem. Rev., 2011, 111(5):3577-3613. |
[2] | Jukk K, Alexeyeva N, Ritslaid P, Kozlova J, Sammelselg V, Tammeveski K. Electrochemical reduction of oxygen on heat-treated Pd nanoparticle/multi-walled carbon nano-tube composites in alkaline solution[J]. Electrocatalysis, 2013, 4(1):42-48. |
[3] | Gasteiger H A, Markovic N M. Just a dream-or future reality[J]. Science, 2009, 324(5923):48-49. |
[4] | Tian N, Zhou Z Y, Sun S G, Ding Y, Wang Z L. Synjournal of tetrahexahedral platinum nanocrystals with high-index facets and high electro-oxidation activity[J]. Science, 2007, 316(5825):732-735. |
[5] | Stamenkovic V R, Mun B S, Mayrhofer K J J, Ross P N, Markovic N M. Effect of surface composition on electronic structure, stability, and electrocatalytic properties of Pt-transition metal alloys: Pt-skin versus Pt-skeleton surfaces[J]. J. Am. Chem. Soc., 2006, 128(27):8813-8819. |
[6] | Gasteiger H A, Kocha S S, Sompalli B, Wagner F T. Activity benchmarks and requirements for Pt, Pt-alloy, and non-Pt oxygen reduction catalysts for PEMFCs[J]. Appl. Catal. B, 2005, 56(1):9-35. |
[7] | Zhu J, Hu L, Zhao P, Lee L Y S, Wong K Y. Recent advances in electrocatalytic hydrogen evolution using nanoparticles[J]. Chem. Rev., 2020, 120(2):851-918. |
[8] | Lim B, Jiang M J, Camargo P H C, Cho E C, Tao J, Lu X M, Zhu Y M, Xia Y N. Pd-Pt bimetallic nanodendrites with high activity for oxygen reduction[J]. Science, 2009, 324(5932):1302-1305. |
[9] | Zhang J, Sasaki K, Sutter E, Adzic R R. Stabilization of platinum oxygen-reduction electrocatalysts using gold clusters[J]. Science, 2007, 315(5809):220-222. |
[10] | Fang Y H, Liu Z P. Tafel kinetics of electrocatalytic reactions: from experiment to first-principles[J]. ACS Catal., 2014, 4(12):4364-4376. |
[11] | Gouy M. Sur la constitution de la charge électrique à la surface d'un électrolyte[J]. J. Phys. Theor. Appl., 1910, 9(1):457-468. |
[12] | Chapman D L, LI. A contribution to the theory of electrocapillarity[J]. Philos. Mag., 1913, 25(148):475-481. |
[13] | Stern O. Zur theorie der elektrolytischen doppelschicht[J]. Elektrochem. Angew. Phys. Chem., 1924, 30(21-22):508-516. |
[14] | Furuya N, Shibata M. Structural changes at various Pt single crystal surfaces with potential cycles in acidic and alkaline solutions[J]. J. Electroanal. Chem., 1999, 467(1):85-91. |
[15] | Basdogan Y, Maldonado A M, Keith J A. Advances and challenges in modeling solvated reaction mechanisms for renewable fuels and chemicals[J]. Wires Comput. Mol. Sci., 2020, 10(2):e1446. |
[16] | Wang H F, Liu Z P. Formic acid oxidation at Pt/H2O interface from periodic DFT calculations integrated with a continuum solvation model[J]. J. Phys. Chem. C, 2009, 113(40):17502-17508. |
[17] | Li Y F, Liu Z P, Liu L, Gao W. Mechanism and activity of photocatalytic oxygen evolution on titania anatase in aqueous surroundings[J]. J. Am. Chem. Soc., 2010, 132(37):13008-13015. |
[18] | Fang Y H, Liu Z P. Electrochemical reactions at the electrode/solution interface: theory and applications to water electrolysis and oxygen reduction[J]. Sci. China Chem., 2010, 53(3):543-552. |
[19] | Shang C, Liu Z P. Stochastic surface walking method for structure prediction and pathway searching[J]. J. Chem. Theory Comput., 2013, 9(3):1838-1845. |
[20] | Shang C, Liu Z P. Constrained broyden minimization combined with the dimer method for locating transition state of complex reactions[J]. J. Chem. Theory Comput., 2010, 6(4):1136-1144. |
[21] | Artrith N, Urban A, Ceder G. Constructing first-principles phase diagrams of amorphous LixSi using machine-learning-assisted sampling with an evolutionary algorithm[J]. J. Chem. Phys., 2018, 148(24):241711. |
[22] | Wales D J, Doye J P K. Global optimization by basin-hopping and the lowest energy structures of lennard-Jones clusters containing up to 110 atoms[J]. J. Phys. Chem. A, 1997, 101(28):5111-5116. |
[23] | Hart G L W, Mueller T, Toher C, Curtarolo S. Machine learning for alloys[J]. Nat. Rev. Mater., 2021, 6(8):730-755. |
[24] | Norskov J K, Rossmeisl J, Logadottir A, Lindqvist L, Kit-chin J R, Bligaard T, Jonsson H. Origin of the overpotential for oxygen reduction at a fuel-cell cathode[J]. J. Phys. Chem. B, 2004, 108(46):17886-17892. |
[25] | Lozovoi A Y, Alavi A, Kohanoff J, Lynden-Bell R M. Ab initio simulation of charged slabs at constant chemical potential[J]. J. Chem. Phys., 2001, 115(4):1661-1669. |
[26] | Nörskov J K, Bligaard T, Rossmeisl J, Christensen C H. Towards the computational design of solid catalysts[J]. Nat. Chem., 2009, 1(1):37-46. |
[27] | Filhol J S, Neurock M. Elucidation of the electrochemical activation of water over Pd by first principles[J]. Angew. Chem. Int. Ed., 2006, 45(3):402-406. |
[28] | Reiss H, Heller A. The absolute potential of the standard hydrogen electrode: a new estimate[J]. J. Phys. Chem, 1985, 89(20):4207-4213. |
[29] | Janik M J, Taylor C D, Neurock M. First principles analysis of the electrocatalytic oxidation of methanol and carbon monoxide[J]. Top. Catal., 2007, 46(3):306-319. |
[30] | Fattebert J L, Gygi F. Density functional theory for efficient ab initio molecular dynamics simulations in solution[J]. J. Comput. Chem., 2002, 23(6):662-666. |
[31] | Fattebert J L, Gygi F. Linear-scaling first-principles mol-ecular dynamics with plane-waves accuracy[J]. Phys. Rev. B, 2006, 73(11):115124. |
[32] | Fang Y H, Liu Z P. Surface phase diagram and oxygen coupling kinetics on flat and stepped Pt surfaces under electrochemical potentials[J]. J. Phys. Chem. C, 2009, 113(22):9765-9772. |
[33] | Fang Y H, Wei G F, Liu Z P. Theoretical modeling of electrode/electrolyte interface from first-principles periodic continuum solvation method[J]. Catal. Today, 2013, 202:98-104. |
[34] | Shang C, Zhang X J, Liu Z P. Stochastic surface walking method for crystal structure and phase transition pathway prediction[J]. Phys. Chem. Chem. Phys., 2014, 16(33):17845-17856. |
[35] | Wei G F, Liu Z P. Restructuring and hydrogen evolution on Pt nanoparticle[J]. Chem. Sci., 2015, 6(2):1485-1490. |
[36] | Li Y F, Liu Z P. Particle size, shape and activity for photocatalysis on titania anatase nanoparticles in aqueous surroundings[J]. J. Am. Chem. Soc., 2011, 133(39):15743-15752. |
[37] | Zhang X J, Shang C, Liu Z P. Stochastic surface walking reaction sampling for resolving heterogeneous catalytic reaction network: A revisit to the mechanism of water-gas shift reaction on Cu[J]. J. Chem. Phys., 2017, 147(15):152706. |
[38] | Behler J. First principles neural network potentials for reactive simulations of large molecular and condensed systems[J]. Angew. Chem. Int. Ed., 2017, 56(42):12828-12840. |
[39] | Huang S D, Shang C, Zhang X J, Liu Z P. Material discovery by combining stochastic surface walking global optimization with a neural network[J]. Chem. Sci., 2017, 8(9):6327-6337. |
[40] | Huang S D, Shang C, Kang P L, Zhang X J, Liu Z P. LASP: Fast global potential energy surface exploration[J]. Wires. Comput. Mol. Sci., 2019, 9(6):e1415. |
[41] | Hansen H A, Rossmeisl J, Nörskov J K. Surface pourbaix diagrams and oxygen reduction activity of Pt, Ag and Ni(111) surfaces studied by DFT[J]. Phys. Chem. Chem. Phys., 2008, 10(25):3722-3730. |
[42] | Wei G F, Fang Y H, Liu Z P. First principles tafel kinetics for resolving key parameters in optimizing oxygen electrocatalytic reduction catalyst[J]. J. Phys. Chem. C, 2012, 116(23):12696-12705. |
[43] | He Q G, Yang X F, Chen W, Mukerjee S, Koel B, Chen S W. Influence of phosphate anion adsorption on the kinetics of oxygen electroreduction on low index Pt(hkl) single crystals[J]. Phys. Chem. Chem. Phys., 2010, 12(39):12544-12555. |
[44] | Fang Y H, Liu Z P. Toward anticorrosion electrodes: site-selectivity and self-acceleration in the electrochemical corrosion of platinum[J]. J. Phys. Chem. C, 2010, 114(9):4057-4062. |
[45] | Wei G F, Liu Z P. Towards active and stable oxygen reduction cathodes: a density functional theory survey on Pt2M skin alloys[J]. Energy Environ. Sci., 2011, 4(4):1268-1272. |
[46] | Wei G F, Liu Z P. Optimum nanoparticles for electrocatalytic oxygen reduction: the size, shape and new design[J]. Phys. Chem. Chem. Phys., 2013, 15(42):18555-18561. |
[47] | Leontyev I N, Belenov S V, Guterman V E, Haghi-Ashtiani P, Shaganov A P, Dkhil B. Catalytic activity of carbon-supported Pt nanoelectrocatalysts. Why reducing the size of Pt nanoparticles is not always beneficial[J]. J. Phys. Chem. C, 2011, 115(13):5429-5434. |
[48] | Fang Y H, Song D D, Li H X, Liu Z P. Structure and activity of potential-dependent Pt(110) surface phases revealed from machine-learning atomic simulation[J]. J. Phys. Chem. C, 2021, 125(20):10955-10963. |
[49] | Stamenkovic V R, Fowler B, Mun B S, Wang G, Ross P N, Lucas C A, Markovic N M. Improved oxygen reduction activity on Pt3Ni(111) via increased surface site avai-lability[J]. Science, 2007, 315(5811):493-497. |
/
〈 |
|
〉 |