单体电化学测量银纳米颗粒动态光解过程
收稿日期: 2021-11-09
修回日期: 2021-12-14
网络出版日期: 2021-12-19
版权
Tracking Light-Induced Fragmentation of Single Silver Nanoparticles by Single Entity Electrochemistry
Received date: 2021-11-09
Revised date: 2021-12-14
Online published: 2021-12-19
Copyright
银纳米颗粒吸收光后会发生能量转换从而导致其晶体结构变化,分析光解过程中纳米颗粒的物理和化学性质十分重要。本文利用具有高灵敏度、高时间分辨率和高通量性质的单体电化学测量技术, 原位实时追踪单个银纳米颗粒的动态光解过程。当银纳米颗粒与限域电极界面碰撞时, 其会发生动态氧化, 从而产生高通量的法拉第电流信号。激光照射会使银纳米颗粒结构发生变化,导致瞬态电流幅值降低和碰撞频率升高。通过统计高通量计时电流信号, 实现了对银纳米颗粒在光照条件下的形貌和结构转变过程的定量评估。研究表明,单体电化学可精准获取光解过程中银纳米颗粒的结构变化信息,揭示颗粒之间物理化学性能的异质性,有助于在单颗粒尺度上对银光解动力学进行深入探究。
陈梦洁 , 芦思珉 , 王浩炜 , 龙亿涛 . 单体电化学测量银纳米颗粒动态光解过程[J]. 电化学, 2022 , 28(3) : 2108521 . DOI: 10.13208/j.electrochem.210852
Light irradiation on silver nanoparticles (Ag NPs) could cause the energy conversion, thus, the fragmentation of Ag NPs. It is important to detect the changes of fragmented Ag NPs in the aspects of physical and chemical properties. Herein, benefiting from the high sensitivity, high temporal resolution, and high-throughput, single entity electrochemistry (SEE) method is introduced to in-situ track the dynamic laser fragmentation of single Ag NP. Compared with UV-Vis absorption spectroscopy and transmission electron microscopy (TEM), SEE methods enables an accurate in-situ measurements of light-induced fragmentation of single Ag NP. The variation in the statistic current amplitude displays the real-time changes of single Ag NP upon laser irradiation for 60 min, which indicates that the laser of 532 nm wavelength is the most effective laser for the dynamic fragmentation. By virtue of the excellent sensing performance, SEE is further applied in revealing the heterogeneity in Ag NPs’ intrinsic physicochemical properties, such as size, crystal structure, surface charge density. The study highlights the potential of SEE to advancing the real-time characterization of nanomaterials in the chemical reactions.
[1] | Wang Y X, Shan X N, Tao N J. Emerging tools for studying single entity electrochemistry[J]. Faraday Discuss., 2016, 193:9-39. |
[2] | Crooks R M. Concluding remarks: single entity electrochemistry one step at a time[J]. Faraday Discuss., 2016, 193:533-547. |
[3] | Baker L A. Perspective and prospectus on single-entity electrochemistry[J]. J. Am. Chem. Soc., 2018, 140(46):15549-15559. |
[4] | Gooding J. Single entity electrochemistry progresses to cell counting[J]. Angew. Chem. Int. Ed., 2016, 55(42):12956-12958. |
[5] | Lu S M, Peng Y Y, Ying Y L, Long Y T. Electrochemical sensing at a confined space[J]. Anal. Chem., 2020, 92(8):5621-5644. |
[6] | Kwon S J, Zhou H J, Fan F R F, Vorobyev V, Zhang B, Bard A J. Stochastic electrochemistry with electrocatalytic nanoparticles at inert ultramicroelectrodes-theory and experiments[J]. Phys. Chem. Chem. Phys., 2011, 13(12):5394-5402. |
[7] | Ren H, Edwards M A. Stochasticity in single-entity electrochemistry[J]. Curr. Opin. Electrochem., 2021, 25:100632. |
[8] | Ma W, Ma H, Chen J F, Peng Y Y, Yang Z Y, Wang H F, Ying. Y L, Tian H, Long Y T. Tracking motion trajectories of individual nanoparticles using time-resolved current traces[J]. Chem. Sci., 2017, 8(3):1854-1861. |
[9] | Ustarroz J, Kang M, Bullions E, Unwin P R. Impact and oxidation of single silver nanoparticles at electrode surfaces: one shot versus multiple events[J]. Chem. Sci., 2017, 8(3):1841-1853. |
[10] | Robinson D A, Liu Y W, Edwards M A, Vitti N J, Oja S M, Zhang B, White H S. Collision dynamics during the electrooxidation of individual silver nanoparticles[J]. J. Am. Chem. Soc., 2017, 139(46):16923-16931. |
[11] | Peng Y Y, Ma H, Ma W, Long Y T, Tian H. Single-nano-particle photoelectrochemistry at a nanoparticulate TiO2-filmed ultramicroelectrode[J]. Angew. Chem. Int. Ed., 2018, 57(14):3758-3762. |
[12] | Ma H, Ma W, Chen J F, Liu X Y, Peng Y Y, Yang Z Y, Tian H, Long Y T. Quantifying visible-light-induced ele-ctron transfer properties of single dye-sensitized ZnO entity for water splitting[J]. J. Am. Chem. Soc., 2018, 140(15):5272-5279. |
[13] | Zhang J H, Zhou Y G. Single particle impact electrochemistry: analyses of nanoparticles and biomolecules[J]. J. Electrochem., 2019, 25(3):374-385. |
[14] | Sun L L, Wang W, Chen H Y. Correlated optical imaging and electrochemical recording for studying single nano-particle collsisons[J]. J. Electrochem., 2019, 25(3):386-399. |
[15] | Wang W, Su B F, Zhan D P. Preparation and charagterization of prussian blue modified nanoelectrode[J]. J. Ele-ctrochem., 2012, 18(3):252-256. |
[16] | Dick J E, Hilterbrand A T, Strawsine L M, Upton J W, Bard A J. Enzymatically enhanced collisions on ultramicroelectrodes for specific and rapid detection of individual viruses[J]. Proc. Natl. Acad. Sci., 2016, 113(23):6403-6408. |
[17] | Xiang Z P, Deng H Q, Peljo P, Fu Z Y, Wang S L, Mandler D, Sun G Q, Liang Z X. Electrochemical dynamics of a single platinum nanoparticle collision event for the hydrogen evolution reaction[J]. Angew. Chem. Int. Ed., 2018, 57(13):3464-3468. |
[18] | Tsuji T, Hashimoto S. Laser-induced fragmentation of colloidal nanoparticles[M]// Sugioka K (Editor). Handbook of laser micro- and nano-engineering. Spring, Cham. 2021: 1-20. |
[19] | Hajiesmaeilbaigi F, Mohammadalipour A, Sabbaghzadeh J, Hoseinkhani S, Fallah H R. Preparation of silver nanoparticles by laser ablation and fragmentation in pure water[J]. Laser Phys. Lett., 2006, 3(5):252-256. |
[20] | Hamad A H. Nanosecond laser generation of silver nano-particles in ice water[J]. Chem. Phys. Lett., 2020, 755(16):137782. |
[21] | Mika A P, Rousseau P, Domaracka A, Huber B A. Interaction of multiply charged ions with large free silver nanoparticles: multielectron capture, fragmentation, and sputtering phenomena[J]. Phys. Rev. B, 2019, 100(7):075439-1-7. |
[22] | Yu R J, Xu S W, Paul S, Ying Y L, Cui L F, Daiguji H, Hsu W L, Long Y T. Nanoconfined electrochemical sensing of single silver nanoparticles with a wireless nanopore electrode[J]. ACS Sens, 2021, 6(2):335-339. |
[23] | Lu S M, Chen J F, Peng Y Y, Ma W, Ma H, Wang H F, Hu P J, Long Y T. Understanding the dynamic potential distribution at the electrode interface by stochastic collision electrochemistry[J]. J. Am. Chem. Soc., 2021, 143(32):12428-12432. |
[24] | Ma W, Ma H, Yang Z Y, Long Y T. Single Ag nanoparticle electro-oxidation: potential-dependent current traces and potential-independence electron transfer kinetic[J]. J. Phys. Chem. Lett., 2018, 9(6):1429-1433. |
[25] | Kim J Y, Han D, Crouch G M, Kwon S R, Bohn P W. Capture of single silver nanoparticles in nanopore arrays detected by simulations amperometry and surface-enhanced raman scattering[J]. Anal. Chem., 2019, 91(7):4568-4576. |
[26] | Li X T, Batchelor-McAuley C, Compton R G. Silver nano-particle detection in real-word environments via particle impact electrochemistry[J]. ACS Sens, 2019, 4(2):464-470. |
[27] | Ma H, Chen J F, Wang H F, Hu P J, Ma W, Long Y T. Exploring dynamic interactions of single nanoparticles at interfaces for surface-confined electrochemical behavior and size measurement[J]. Nat. Commun., 2020, 11:2307. |
[28] | Kamat P V, Flumiani M, Hartland G V. Picosecond dynamics of silver nanoclusters. photoejection of electrons and fragmentation[J]. J. Phys. Chem. B, 1998, 102(17):3123-3128. |
[29] | Eustis S, Krylova G, Eremenko A, Smirnova N, Schill A W, El-Sayed M. Growth and fragmentation of silver nanoparticles in their synjournal with a fs laser and CW light by photo-sensitization with benzophenone[J]. Photo-chem. Photobiol. Sci., 2005, 4(1):154-159. |
[30] | Jin R C, Cao Y C, Hao E, Metranux G S, Schatz G C, Mirkin C A. Controlling anisotropic nanoparticle growth through plasmon excitation[J]. Nature, 2003, 425(6957):487-490. |
[31] | Mohanty J, Palit D K, Shastri L V, Sapre A V. Plused laser excitation of phosphate stabilised silver nanoparticles[J]. J. Chem. Sci., 2000, 112(1) 63-72. |
[32] | Park J H, Boika A, Park H S, Lee H C, Bard A J. Single collision events of conductive nanoparticles driven by migration[J]. J. Phys. Chem. C, 2013, 117(13):6651-6657. |
[33] | Ellison J, Batchelor-McAuley C, Tschulik K, Compton R G. The use cylindrical micro-wire electrodes for nano-im-pact experiments: facilitating the sub-picomolar detection of single nanoparticles[J]. Sens. Actuators B Chem., 2014, 200:47-52. |
/
〈 |
|
〉 |