欢迎访问《电化学(中英文)》期刊官方网站,今天是
综述

碱性介质中非贵金属氧还原催化剂的结构调控进展

  • 王雪 ,
  • 张丽 ,
  • 刘长鹏 ,
  • 葛君杰 ,
  • 祝建兵 ,
  • 邢巍
展开
  • 1.中国科学院长春应用化学研究所电分析化学国家重点实验室,吉林 长春 130022
    2.中国科学技术大学,安徽 合肥 230026

收稿日期: 2021-11-01

  修回日期: 2021-12-02

  网络出版日期: 2021-12-18

版权

《电化学》编辑部, 2022, 版权所有,未经授权,不得转载、摘编本刊文章,不得使用本刊的版式设计。

Recent Advances in Structural Regulation on Non-Precious Metal Catalysts for Oxygen Reduction Reaction in Alkaline Electrolytes

  • Xue Wang ,
  • Li Zhang ,
  • Chang-Peng Liu ,
  • Jun-Jie Ge ,
  • Jian-Bing Zhu ,
  • Wei Xing
Expand
  • 1. State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry,Chinese Academy of Sciences, Changchun 130022, Jilin, China
    2. University of Science and Technology of China, Hefei 230026, Anhui, China
*Tel: (86-431)85262147, E-mail: zjb@ciac.ac.cn;
xingwei@ciac.ac.cn

Received date: 2021-11-01

  Revised date: 2021-12-02

  Online published: 2021-12-18

Copyright

, 2022, Copyright reserved © 2022

摘要

碱性介质中的氧还原反应是金属-空气电池和阴离子交换膜燃料电池的重要电化学过程。但是,其动力学缓慢,因而引起了对高效电催化剂的广泛研究。其中,非贵金属催化剂可有效地规避铂基催化剂成本和储量的问题,而备受关注。但其挑战在于将性能提高到可与Pt基催化材料媲美。鉴于非贵金属催化剂的组成和结构对催化性能有着至关重要的影响,精准地调控催化剂的结构有望消除非贵金属催化剂和商业铂基催化剂的活性差距。在该评述中,我们致力于总结通过结构调控来提升性能的研究进展。我们首先介绍了四种极具代表性的非贵金属催化剂,包括非金属碳基材料、金属化合物、石墨化碳层包覆金属颗粒、原子分散的金属-氮-碳材料,突出了催化活性位点和催化机理。随后,针对于这些催化剂,我们归纳了从微纳尺度到原子层面的结构调控策略,如分级多孔结构的设计、界面工程、缺陷工程以及原子对活性位点的构建。我们着重讨论了结构和性能之间的依赖关系。从加速传质、增加可及的活性位点数量、可调控的电子状态和多组分之间的协同效应,讨论了这些结构变化引起的活性改进的起源。最后,我们对该领域存在的挑战以及未来的前景进行了展望。

本文引用格式

王雪 , 张丽 , 刘长鹏 , 葛君杰 , 祝建兵 , 邢巍 . 碱性介质中非贵金属氧还原催化剂的结构调控进展[J]. 电化学, 2022 , 28(2) : 2108501 . DOI: 10.13208/j.electrochem.210850

Abstract

Oxygen reduction reaction (ORR) in alkaline electrolytes is an important electrochemical process for metal-air batteries and anion exchange membrane fuel cells (AEMFCs). However, the sluggish kinetics spurs intensive research on searching robust electrocatalysts. Non-precious metal catalysts (NPMCs) that can circumvent the cost and scarcity issues associated with platinum (Pt)-based materials have been pursued and the challenges lie in the performance improvement to rival Pt-based benchmarks. As the composition and structure of the NPMCs have a significant impact on the catalytic performance, precise regulation on the catalyst structure holds great promise to bridge the activity gap between NPMCs and Pt-based benchmarks. In this minireview, we aim to provide an overview of recent progress in the structural regulation on NPMCs towards improved performance. The four typical categories of NPMCs, i.e., metal-free carbon-based materials, metal compounds, metal encapsulated in graphitic layer and atomically dispersed metal-nitrogen-carbon materials, are firstly introduced, where catalytic active sites and catalytic mechanism are highlighted. Subsequently, we summarize the representative structural regulation from a nanoscale to an atomic scale including hierarchically porous structure regulation, interface engineering, defect engineering and atomic pair construction. Special emphasis is placed on the elucidation of the catalytic structure-performance relationship. The origins of activity improvements from these structural regulations are discussed in terms of accelerated mass transfer, increased accessible active sites, tailored electronic states, and synergetic effect between multi-components. Finally, the challenges and opportunities are discussed.

参考文献

[1] Lewis N S, Nocera D G. Powering the planet: Chemical challenges in solar energy utilization[J]. PNAS, 2006, 103(43):15729-15735.
[2] Arges C G, Ramani V, Pintauro P N. Anion exchange me-mbrane fuel cells[J]. Electrochem. Soc. Interface, 2010, 19(2):31-35.
[3] Cheng F Y, Chen J. Metal-air batteries: from oxygen reduction electrochemistry to cathode catalysts[J]. Chem. Soc. Rev., 2012, 41(6):2172-2192.
[4] Nörskov J K, Rossmeisl J, Logadottir A. Origin of the overpotential for oxygen reduction at a fuel-cell cathode[J]. J. Phys. Chem. B, 2004, 108(46):17886-17892.
[5] Niu W J, He J Z, Gu B N, Liu M C, Chueh Y L. Opportunities and challenges in precise synjournal of transition metal single‐atom supported by 2D materials as catalysts toward oxygen reduction reaction[J]. Adv. Funct. Mater., 2021, 31(35):2103558.
[6] Liu M M, Wang L L, Zhao K N, Shi S S, Shao Q S, Zhang L, Sun X L, Zhao Y F, Zhang J J. Atomically dispersed metal catalysts for the oxygen reduction reaction: synjournal, characterization, reaction mechanisms and electrochemical energy applications[J]. Energy & Environ Sci., 2019, 12(10):2890-2923.
[7] Wu G, Zelenay P. Nanostructured nonprecious metal catalysts for oxygen reduction reaction[J]. Acc. Chem. Res., 2013, 46(8):1878-1889.
[8] Feng Y, Alonso-Vante N. Nonprecious metal catalysts for the molecular oxygen-reduction reaction[J]. Phys. Status Solidi, 2010, 245(9):1792-1806.
[9] Zhu C Z, He L, Fu S F, Dan D, Lin Y H. Highly efficient nonprecious metal catalysts towards oxygen reduction reaction based on three-dimensional porous carbon nanostructures[J]. Chem. Soc. Rev., 2016, 45(3):517-531.
[10] Gong K P, Du F, Xia Z H, Durstock M, Dai L M. Nitrogen-doped carbon nanotube arrays with high electrocatalytic activity for oxygen reduction[J]. Science, 2009, 323(5915):760-764.
[11] Zhang L P, Lin C Y, Zhang D T, Gong L L, Zhu Y H, Zhao Z H, Xu Q, Li H J, Xia Z H. Guiding principles for designing highly efficient metal-free carbon catalysts[J]. Adv. Mater., 2019, 31(13):1805252.
[12] Daems N, Sheng X, Vankelecom I F J, Pescarmona P P. Metal-free doped carbon materials as electrocatalysts for the oxygen reduction reaction[J]. J. Mater. Chem. A, 2014, 2(12):4085-4110.
[13] Quílez-Bermejo J, Morallón E, Cazorla-Amorós D. Metal-free heteroatom-doped carbon-based catalysts for ORR: A critical assessment about the role of heteroatoms[J]. Carbon, 2020, 165:434-454.
[14] Liang Y Y, Li Y G, Wang H L, Zhou J G, Wang J, Regier T, Dai H J. Co3O4 nanocrystals on graphene as a synergistic catalyst for oxygen reduction reaction[J]. Nat. Mater., 2011, 10(10):780-786.
[15] Odedairo T, Yan X C, Ma J, Jiao Y L, Yao X D, Du A J, Zhu Z H. Nanosheets Co3O4 interleaved with graphene for highly efficient oxygen reduction[J]. ACS Appl. Mater. Interfaces, 2015, 7(38):21373-21380.
[16] Deng D H, Yu L, Chen X Q, Wang G X, Jin L, Pan X L, Deng J, Sun G Q, Bao X H. Iron encapsulated within pod-like carbon nanotubes for oxygen reduction reaction[J]. Angew. Chem. Int. Ed., 2013, 52(1):371-375.
[17] He Y H, Liu S W, Priest C, Shi Q R, Wu G. Atomically dispersed metal-nitrogen-carbon catalysts for fuel cells: advances in catalyst design, electrode performance, and durability improvement[J]. Chem. Soc. Rev., 2020, 49(11):3484-3524.
[18] Chen M J, He Y H, Spendelow J S, Wu G. Atomically dispersed metal catalysts for oxygen reduction[J]. ACS Energy Lett., 2019, 4(7):1619-1633.
[19] Zhu Y Z, Sokolowski J, Song X C, He Y H, Mei Y, Wu G. Engineering local coordination environments of atomically dispersed and heteroatom-coordinated single metal site electrocatalysts for clean energy-conversion[J]. Adv. Energy. Mater., 2020, 10(11):1902844.
[20] Pan Y, Zhang C, Liu Z, Chen C, Li Y D. Structural regulation with atomic-level precision: from single-atomic site to diatomic and atomic interface catalysis[J]. Matter, 2020, 2(1):78-110.
[21] Liu D B, He Q, Ding S Q, Song L. Structural regulation and support coupling effect of single-atom catalysts for heterogeneous catalysis[J]. Adv. Energy. Mater., 2020, 10(32):2001482.
[22] Ling T, Jaroniec M, Qiao S Z. Recent progress in engineering the atomic and electronic structure of electrocatalysts via cation exchange reactions[J]. Adv. Mater., 2020, 32(46):2001866.
[23] Zhang L P, Xu Q, Niu J B, Xia Z H. Role of lattice defects in catalytic activities of graphene clusters for fuel cells[J]. Phys. Chem. Chem. Phys., 2015, 17(26):16733-16743.
[24] Jia Y, Zhang L Z, Zhuang L Z, Liu H L, Yan X C, Wang X, Liu J D, Wang J C, Zheng Y R, Xiao Z H, Taran E, Chen J, Yang D J, Zhu Z H, Wang S Y, Dai L M, Yao X D. Identification of active sites for acidic oxygen reduction on carbon catalysts with and without nitrogen doping[J]. Nat. Catal., 2019, 2(8):688-695.
[25] Hu C G, Paul R, Dai Q B, Dai L M. Carbon-based metal-free electrocatalysts: from oxygen reduction to multifunctional electrocatalysis[J]. Chem. Soc. Rev., 2021, 50(21):11785-11843.
[26] Gao F, Zhao G L, Yang S, Spivey J J. Nitrogen-doped fullerene as a potential catalyst for hydrogen fuel cells[J]. J. Am. Chem. Soc., 2013, 135(9):3315-3318.
[27] Sidik R A, Anderson A B, Subramanian N P, Kumaraguru S P, Popov B N. O2 reduction on graphite and nitrogen-doped graphite: experiment and theory[J]. J. Phys. Chem. B, 2006, 110(4):1787-1793.
[28] Xing T, Zheng Y, Li L H, Cowie B C C, Gunzelmann D, Qiao S Z, Huang S M, Chen Y. Observation of active sites for oxygen reduction reaction on nitrogen-doped multilayer graphene[J]. ACS Nano, 2014, 8(7):6856-6862.
[29] Guo D H, Shibuya R, Akiba C, Saji S, Kondo T, Nakamura J. Active sites of nitrogen-doped carbon materials for oxygen reduction reaction clarified using model catalysts[J]. Science, 2016, 351(6271):361-365.
[30] Ding W, Wei Z D, Chen S G, Qi X Q, Yang T, Hu J S, Wang D, Wan L-J, Alvi S F, Li L. Space-confinement-induced synjournal of pyridinic- and pyrrolic-nitrogen-doped graphene for the catalysis of oxygen reduction[J]. Angew. Chem. Int. Ed., 2013, 52(45):11755-11759.
[31] Luo E G, Xiao M L, Ge J J, Liu C P, Xing W. Selectively doping pyridinic and pyrrolic nitrogen into a 3D porous carbon matrix through template-induced edge engineering: enhanced catalytic activity towards the oxygen reduction reaction[J]. J. Mater. Chem. A, 2017, 5(41):21709-21714.
[32] Silva R, Al-Sharab J, Asefa T. Edge-plane-rich nitrogen-doped carbon nanoneedles and efficient metal-free electrocatalysts[J]. Angew. Chem. Int. Ed., 2012, 51(29):7171-7175.
[33] Zhao Y, Yang L J, Chen S, Wang X Z, Ma Y W, Wu Q, Jiang Y F, Qian W J, Hu Z. Can boron and nitrogen co-doping improve oxygen reduction reaction activity of carbon nanotubes?[J]. J. Am. Chem. Soc., 2013, 135(4):1201-1204.
[34] Zhu J B, Li K, Xiao M L, Liu C P, Wu Z J, Ge J J, Xing W. Significantly enhanced oxygen reduction reaction performance of N-doped carbon by heterogeneous sulfur incorporation: synergistic effect between the two dopants in metal-free catalysts[J]. J. Mater. Chem. A, 2016, 4(19):7422-7429.
[35] Chen W, Chen X, Qiao R, Jiang Z, Jiang Z J, Papovi? S, Raleva K, Zhou D. Understanding the role of nitrogen and sulfur doping in promoting kinetics of oxygen reduction reaction and sodium ion battery performance of hollow spherical graphene[J]. Carbon, 2022, 187:230-240.
[36] Razmjooei F, Singh K P, Song M Y, Yu J S. Enhanced electrocatalytic activity due to additional phosphorous doping in nitrogen and sulfur-doped graphene: A comprehensive study[J]. Carbon, 2014, 78:257-267.
[37] Xing Z H, Xiao M L, Guo Z L, Yang W S. Colloidal silica assisted fabrication of N,O,S-tridoped porous carbon nanosheets with excellent oxygen reduction performance[J]. Chem. Commun., 2018, 54(32):4017-4020.
[38] Yang Z, Zhou X M, Jin Z P, Liu Z, Nie H G, Chen X A, Huang S M. A facile and general approach for the direct fabrication of 3D, vertically aligned carbon nanotube array/transition metal oxide composites as non-Pt catalysts for oxygen reduction reactions[J]. Adv. Mater., 2014, 26(19):3156-3161.
[39] Sun J, Du L, Sun B Y, Han G K, Ma Y L, Wang J J, Huo H, Du C Y, Yin G P. Bifunctional LaMn0.3Co0.7O3 perovskite oxide catalyst for oxygen reduction and evolution reactions: The optimized e(g) electronic structures by ma-nganese dopant[J]. ACS Appl. Mater. Interfaces, 2020, 12(45):24717-24725.
[40] Ren D Z, Ying J, Xiao M L, Deng Y P, Ou J H, Zhu J B, Liu G H, Pei Y, Li S, Jauhar A M, Jin H L, Wang S, Su D, Yu A P, Chen Z W. Hierarchically porous multimetal-based carbon nanorod hybrid as an efficient oxygen catalyst for rechargeable zinc-air batteries[J]. Adv. Funct. Mater., 2020, 30(7):1908167.
[41] Liu H T, Guan J Y, Yang S X, Yu Y H, Shao R, Zhang Z P, Dou M L, Wang F, Xu Q. Metal-organic framework-derived Co2P nanoparticle/multi-doped porous carbon as a trifunctional electrocatalyst[J]. Adv. Mater., 2020, 32(36):2003649.
[42] Parra-Puerto A, Ng K L, Fahy K, Goode A E, Ryan M P, Kucernak A. Supported transition metal phosphides: activity survey for HER, ORR, OER, and corrosion resistance in acid and alkaline electrolytes[J]. ACS Catal., 2019, 9(12):11515-11529.
[43] Liu W W, Ren B H, Zhang W Y, Zhang M W, Li G R, Xiao M L, Zhu J B, Yu A P, Ricardez-Sandoval L, Chen Z W. Defect-enriched nitrogen doped-graphene quantum dots engineered NiCo2S4 nanoarray as high-efficiency bifunctional catalyst for flexible Zn-air battery[J]. Small, 2019, 15(44):1903610.
[44] Yu Y D, Zhou J, Sun Z M. Novel 2D Transition-Metal Carbides: Ultrahigh performance electrocatalysts for overall water splitting and oxygen reduction[J]. Adv. Func. Mater., 2020, 30(47):2000570.
[45] Rasaki S A, Shen H, Thomas T, Yang M. Solid-solid separation approach for preparation of carbon-supported cobalt carbide nanoparticle catalysts for oxygen reduction[J]. ACS Appl. Nano. Mater., 2019, 2(6):3662-3670.
[46] Huang H T, Chang Y, Jia J C, Jia M L, Wen Z H. Understand the Fe3C nanocrystalline grown on rGO and its performance for oxygen reduction reaction[J]. Int. J. Hydrogen Energy, 2020, 45(53):28764-28773.
[47] Wang M, Yang Y S, Liu X, Pu Z H, Kou Z K, Zhu P P, Mu S C. The role of iron nitrides in the Fe-N-C catalysis system towards the oxygen reduction reaction[J]. Nano-scale, 2017, 9(22):7641-7649.
[48] Tian X L, Wang L, Chi B, Xu Y, Zaman S, Qi K, Liu H, Liao S, Xia B Y. Formation of a tubular assembly by ultrathin Ti0.8Co0.2N nanosheets as efficient oxygen reduction electrocatalysts for hydrogen-/metal-air fuel cells[J]. ACS Catal., 2018, 8(10):8970-8975.
[49] Kreider M E, Gallo A, Back S, Liu Y, Siahrostami S, No-rdlund D, Sinclair R, Norskov J K, King L A, Jaramillo T F. Precious metal-free nickel nitride catalyst for the oxygen reduction raction[J]. ACS Appl. Mater. Interfaces, 2019, 11(30):26863-26871.
[50] Tian Y H, Xu L, Qiu J X, Liu X H, Zhang S Q. Rational design of sustainable transition metal-based bifunctional electrocatalysts for oxygen reduction and evolution reactions[J]. Sustain.Mater.Techno., 2020, 25:e00204.
[51] Wang M Y, Han B H, Deng J J, Jiang Y, Zhou M Y, Lucero M, Wang Y, Chen Y B, Yang Z Z, N'diaye A T, Wang Q, Xu Z C J, Feng Z X. Influence of Fe substitution into LaCoO3 electrocatalysts on oxygen-reduction activity[J]. ACS Appl. Mater. Interfaces, 2019, 11(6):5682-5686.
[52] Surendran S, Shanmugapriya S, Sivanantham A, Shanmugam S, Kalai Selvan R. Electrospun carbon nanofibers encapsulated with NiCoP: A multifunctional electrode for supercapattery and oxygen reduction, oxygen evolution, and hydrogen evolution reactions[J]. Adv. Energy Mater., 2018, 8(20):1800555.
[53] Han X P, Zhang W, Ma X Y, Zhong C, Zhao N Q, Hu W B, Deng Y D. Identifying the activation of bimetallic sites in NiCo2S4@g-C3N4-CNT hybrid electrocatalysts for synergistic oxygen reduction and evolution[J]. Adv. Mater., 2019, 31(18):1808281.
[54] Liu W W, Ren B H, Zhang W Y, Zhang M W, Li G R, Xiao M L, Zhu J B, Yu A P, Ricardez-Sandoval L, Chen Z W. Defect-enriched nitrogen doped-graphene quantum dots engineered NiCo2S4 nanoarray as high-efficiency bifunctional catalyst for flexible Zn-air battery[J]. Small, 2019, 15(44):1903610.
[55] Strickland K, Elise M W, Jia Q Y, Tylus U, Ramaswamy N, Liang W T, Sougrati M T, Jaouen F, Mukerjee S. Highly active oxygen reduction non-platinum group metal electrocatalyst without direct metal-nitrogen coordination[J]. Nat. Commun., 2015, 6:7343.
[56] Varnell J A, Tse E C M, Schulz C E, Fister T T, Haasch R T, Timoshenko J, Frenkel A I, Gewirth A A. Identification of carbon-encapsulated iron nanoparticles as active species in non-precious metal oxygen reduction catalysts[J]. Nat. Commun., 2016, 7:12582.
[57] Chen M X, Zhu M Z, Zuo M, Chu S Q, Zhang J, Wu Y, Liang H W, Feng X L. Identification of catalytic sites for oxygen reduction in metal/nitrogen-doped carbons with encapsulated metal nanoparticles[J]. Angew. Chem. Int. Ed., 2020, 59(4):1627-1633.
[58] Chen X Q, Xiao J P, Wang J, Deng D H, Hu Y F, Zhou J G, Yu L, Heine T, Pan X L, Bao X H. Visualizing electronic interactions between iron and carbon by X-ray chemical imaging and spectroscopy[J]. Chem. Sci., 2015, 6(5):3262-3267.
[59] Hu Y, Jensen J O, Zhang W, Huang Y J, Cleemann LN, Xing W, Bjerrum, N J, Li Q F. Direct synjournal of Fe3C-functionalized graphene by high temperature autoclave pyrolysis for oxygen reduction[J]. ChemSusChem, 2014, 7(8):2099-2113.
[60] Aijaz A, Masa J, Rsler C, Antoni H, Fischer R A, Schuhmann W, Muhler M. MOF-templated assembly approach for Fe3C nanoparticles encapsulated in bamboo-like N-doped CNTs: highly efficient oxygen reduction under acidic and basic conditions[J]. Chem. Eur. J., 2017, 23(50):12125-12130.
[61] Kong A, Zhang Y, Chen Z, Chen A, Li C, Wang H, Shan Y. One-pot synthesized covalent porphyrin polymer-derived core-shell Fe3C@carbon for efficient oxygen electroreduction[J]. Carbon, 2017, 116:606-614.
[62] Hu Y, Jensen J O, Zhang W, Cleemann L N, Xing W, Bjerrum N J, Li Q F. Hollow spheres of iron carbide nanoparticles encased in graphitic layers as oxygen reduction catalysts[J]. Angew. Chem. Int. Ed., 2014, 53(14):3675-3679.
[63] Zhu J B, Xiao M L, Liu C P, Ge J J, St-Pierre J, Xing W. Growth mechanism and active site probing of Fe3C@N-doped carbon nanotubes/C catalysts: guidance for building highly efficient oxygen reduction electrocatalysts[J]. J. Mater. Chem. A, 2015, 3(43):21451-21459.
[64] Xiao M L, Zhu J B, Feng L G, Liu C P, Xing W. Meso/Macroporous nitrogen-doped carbon architectures with iron carbide encapsulated in graphitic layers as an efficient and robust catalyst for the oxygen reduction reaction in both acidic and alkaline solutions[J]. Adv. Mater., 2015, 27(15):2521-2527.
[65] Nandan R, Pandey P, Gautam A. Atomic Arrangement Modulation in CoFe nanoparticles encapsulated in N-doped carbon nanostructures for efficient oxygen reduction reaction[J]. ACS Appl. Mater. Interfaces, 2021, 13(3):3771-3781.
[66] Lv C C, Liang B L, Li K X, Zhao Y, Sun H W. Boosted activity of graphene encapsulated CoFe alloys by blending with activated carbon for oxygen reduction reaction[J]. Biosens. Bioelectron., 2018, 117:802-809.
[67] Liu Y, Wu X, Guo X, Lee K, Sun Q, Li X, Zhang C, Wang Z, Hu J, Zhu Y, Leung M K H, Zhu Z. Modulated FeCo nanoparticle in situ growth on the carbon matrix for high-performance oxygen catalysts[J]. Mater. Today Energy, 2021, 19:100610.
[68] Hou Y, Cui S M, Wen Z H, Guo X R, Feng X L, Chen J H. Electrocatalysis: Strongly coupled 3D hybrids of N-doped porous carbon nanosheet/CoNi alloy-encapsulated carbon nanotubes for enhanced electrocatalysis[J]. Small, 2015, 11(44):5939.
[69] Niu L J, Liu G H, Li Y F, An J W, Zhao B Y, Yang J S, Qu D, Wang X Y, An L, Sun Z C. CoNi alloy nanoparticles encapsulated in N-doped graphite carbon nanotubes as an efficient electrocatalyst for oxygen reduction reaction in an alkaline medium[J]. ACS Sustainable Chem. Eng., 2021, 9(24):8207-8213.
[70] Zhu J B, Xiao M L, Zhang Y L, Jin Z, Peng Z Q, Liu C P, Chen S L, Ge J J, Xing W. Metal-organic framework-induced synjournal of ultrasmall encased NiFe nanoparticles coupling with graphene as an efficient oxygen electrode for a rechargeable Zn-air battery[J]. ACS Catal., 2016, 6(10):6335-6342.
[71] Wang Z, Ang J M, Liu J, Ma X, Kong G H, Zhang Y F, Yan T, Lu X H. FeNi alloys encapsulated in N-doped CNTs-tangled porous carbon fibers as highly efficient and durable bifunctional oxygen electrocatalyst for rechargeable zinc-air battery[J]. Appl. Catal. B: Environ., 2019, 263:118344.
[72] Niu H J, Chen S S, Feng J J, Zhang L, Wang A J. Assembled hollow spheres with CoFe alloyed nanocrystals encapsulated in N, P-doped carbon nanovesicles: An ultra-stable bifunctional oxygen catalyst for rechargeable Zn-air battery[J]. J. Power Sources, 2020, 475:228594.
[73] Dong Z, Li M X, Zhang W L, Liu Y J, Wang Y, Qin C L, Yu L T, Yang J, Zhang X, Dai X P. Cobalt nanoparticles embedded in N, S Co-doped carbon towards oxygen reduction reaction derived by in-situ reducing cobalt sulfide[J]. ChemCatChem, 2019, 11(24):6039-6050.
[74] Qiao B, Wang A, Yang X, Allard L F, Jiang Z, Cui Y, Liu J, Li J, Zhang T. Single-atom catalysis of CO oxidation using Pt1/FeOx[J]. Nat. Chem., 2011, 3(8):634-641.
[75] Lefevre M, Proietti E, Jaouen F, Dodelet J P. Iron-based catalysts with improved oxygen reduction activity in poly-mer electrolyte fuel cells[J]. Science, 2009, 324(5923):71-74.
[76] Chen Y J, Ji S F, Wang Y G, Dong J C, Chen W X, Li Z, Shen R A, Zheng L R, Zhuang Z B, Wang D S, Li Y D. Isolated single iron atoms anchored on N-doped porous carbon as an efficient electrocatalyst for the oxygen reduction reaction[J]. Angew. Chem. Int. Ed., 2017, 56(24):6937-6941.
[77] Zhao X L, Shao L, Wang Z M, Chen H B, Yang H P, Zeng L. In situ atomically dispersed Fe doped metal-organic framework on reduced graphene oxide as bifunctional electrocatalyst for Zn-air batteries[J]. J. Mater. Chem. C, 2021, 9(34):11252-11260.
[78] Zhao X, Shao L, Wang Z, Chen H, Yang H, Zeng L. In situ atomically dispersed Fe doped metal-organic framework on reduced graphene oxide as bifunctional electrocatalyst for Zn-air batteries[J]. J. Mater. Chem. C, 2021, 9(34):11252-11260.
[79] Gong X F, Zhu J B, Li J Z, Gao R, Zhou Q Y, Zhang Z, Dou H Z, Zhao L, Sui X L, Cai J J, Zhang Y L, Liu B, Hu Y F, Yu A P, Sun S H, Wang Z B, Chen Z W. Self-templated hierarchically porous carbon nanorods embedded with atomic Fe-N4 active sites as efficient oxygen reduction electrocatalysts in Zn-air batteries[J]. Adv. Funct. Mater., 2021, 31(8):2008085.
[80] Fu X G, Jiang G P, Wen G B, Gao R, Li S, Li M, Zhu J B, Zheng Y, Li Z Q, Hu Y F, Yang L, Bai Z Y, Yu A P, Chen Z W. Densely accessible Fe-Nx active sites decorated mesoporous-carbon-spheres for oxygen reduction towards high performance aluminum-air flow batteries[J]. Appl. Cata. B: Environ., 2021, 293:120176.
[81] Xiao M L, Xing Z H, Jin Z, Liu C P, Ge J J, Zhu J B, Wang Y, Zhao X, Chen Z W. Preferentially engineering FeN4 edge sites onto graphitic nanosheets for highly active and durable oxygen electrocatalysis in rechargeable Zn-air batteries[J]. Adv. Mater., 2020, 32(49):2004900.
[82] Han X P, Ling X F, Wang Y, Ma T Y, Zhong C, Hu W B, Deng Y D. Generation of nanoparticle, atomic-cluster, and single-atom cobalt catalysts from zeolitic imidazole frameworks by spatial isolation and their use in zinc-air batteries[J]. Angew. Chem. Int. Ed., 2019, 58(16):5359-5364.
[83] Pan Y, Liu S J, Sun K A, Chen X, Wang B, Wu K L, Cao X, Cheong W-C, Shen R A, Han A J, Chen Z, Zheng L R, Luo J, Lin Y, Liu Y Q, Wang D S, Peng Q, Zhang Q, Chen C, Li Y D. A bimetallic Zn/Fe polyphthalocyanine-derived dingle-atom Fe-N4 catalytic site: a superior trifunctional catalyst for overall water splitting and Zn-air batteries[J]. Angew. Chem. Int. Ed., 2018, 57(28):8614-8618.
[84] Chen G B, Liu P, Liao Z Q, Sun F F, He Y H, Zhong H X, Zhang T, Zschech E, Chen M W, Wu G, Zhang J, Feng X L. Zinc-mediated template synjournal of Fe-N-C electrocatalysts with densely accessible Fe-Nx active sites for efficient oxygen reduction[J]. Adv. Mater., 2020, 32(8):1907399.
[85] Arif Khan M, Sun C L, Cai J, Ye D X, Zhao K N, Zhang G B, Shi S S, Ali Shah L, Fang J H, Yang C, Zhao H B, Mu S C, Zhang J J. Potassium-ion activating formation of Fe-N-C moiety as efficient oxygen electrocatalyst for Zn-air batteries[J]. ChemElectroChem, 2021, 8(7):1298-1306.
[86] Ding S C, Lyu Z Y, Sarnello E, Xu M J, Fang L Z, Tian H Y, Karcher S, Li T, Pan X Q, Mccloy J, Ding G D, Zhang Q, Shi Q R, Du D, Li J C, Zhang X, Lin Y H. A MnOx enhanced atomically dispersed iron-nitrogen-carbon catalyst for the oxygen reduction reaction[J]. J. Mater. Chem. A, 2021, DOI: 10.1039/d1ta07219f.
[87] Cheng Q Q, Yang L J, Zou L L, Zou Z Q, Chen C, Hu Z, Yang H. Single cobalt atom and N co-doped carbon nanofibers as highly durable electrocatalyst for oxygen reduction reaction[J]. ACS Catal., 2017, 7(10):6864-6871.
[88] Wu G, More K L, Johnston C M, Zelenay P. High-performance electrocatalysts for oxygen reduction derived from polyaniline, iron, and cobalt[J]. Science, 2011, 332(6028):443-447.
[89] Zhou Q Y, Cai J J, Zhang Z, Gao R, Chen B, Wen G B, Zhao L, Deng Y P, Dou H Z, Gong X F, Zhang Y L, Hu Y F, Yu A P, Sui X L, Wang Z B, Chen Z W. A gas-phase migration strategy to synthesize atomically dispersed Mn-N-C catalysts for Zn-air batteries[J]. Small Methods, 2021, 5(6):2100024.
[90] Song P, Luo M, Liu X Z, Xing W, Xu W L, Jiang Z, Gu L. Zn single atom catalyst for highly efficient oxygen reduction reaction[J]. Adv. Funct. Mater., 2017, 27(28):1700802.
[91] Zhang S A, Xue H, Li W l, Sun J, Guo N K, Song T S, Dong H L, Zhang J W, Ge X, Zhang W, Wang Q. Constructing precise coordination of nickel active sites on hierarchical porous carbon framework for superior oxygen reduction[J]. Small, 2021, 17(35):2102125.
[92] Shang H S, Zhou X Y, Dong J C, Li A, Zhao X, Liu Q H, Lin Y, Pei J J, Li Z, Jiang Z L, Zhou D N, Zheng L R, Wang Y, Zhou J, Yang Z K, Cao R, Sarangi R, Sun T T, Yang X, Zheng X S, Yan W S, Zhuang Z B, Li J, Chen W X, Wang D S, Zhang J T, Li Y D. Engineering unsymmetrically coordinated Cu-S1N3 single atom sites with enhanced oxygen reduction activity[J]. Nat. Commun., 2020, 11:3049.
[93] Liang H W, Zhuang X D, Bruller S, Feng X L, Mullen K. Hierarchically porous carbons with optimized nitrogen doping as highly active electrocatalysts for oxygen reduction[J]. Nat. Commun., 2014, 5:4973.
[94] Li Z Q, Jiang G P, Deng Y P, Liu G H, Ren D Z, Zhang Z, Zhu J B, Gao R, Jiang Y, Luo D, Zhu Y F, Liu D H, Jauhar A M, Jin H L, Hu Y F, Wang S, Chen Z W. Deep-breathing honeycomb-like Co-Nx-C nanopolyhedron bifunctional oxygen electrocatalysts for rechargeable Zn-air batteries[J]. iScience, 2020, 23(8):101404.
[95] Guo C X, Zheng Y, Ran J R, Xie F X, Jaroniec M, Qiao S Z. Engineering high-energy interfacial structures for high-performance oxygen-involving electrocatalysis[J]. Angew. Chem. Int. Ed., 2017, 56(29):8539-8543.
[96] Lin Y X, Yang L, Zhang Y K, Jiang H L, Xiao Z J, Wu C Q, Zhang G B, Jiang J, Song L. Defective carbon-CoP nanoparticles hybrids with interfacial charges polarization for efficient bifunctional oxygen electrocatalysis[J]. Adv. Energy Mater., 2018, 8(18):1703623.
[97] Zhu J B, Xiao M L, Li G R, Li S, Zhang J, Liu G H, Ma L, Wu T P, Lu J, Yu A P, Su D, Jin H L, Wang S, Chen Z W. A triphasic bifunctional oxygen electrocatalyst with tunable and synergetic interfacial structure for rechargeable Zn-air batteries[J]. Adv. Energy Mater., 2020, 10(4):1903003.
[98] Niu Y, Xiao M L, Zhu J B, Zeng T T, Li J D, Zhang W Y, Su D, Yu A P, Chen Z W. A “trimurti” heterostructured hybrid with an intimate CoO/CoxP interface as a robust bifunctional air electrode for rechargeable Zn-air batteries[J]. J. Mater. Chem. A, 2020, 8(18):9177-9184.
[99] Yin H, Zhang C Z, Liu F, Hou Y L. Hybrid of iron nitride and nitrogen-doped graphene aerogel as synergistic catalyst for oxygen reduction reaction[J]. Adv. Funct. Mater., 2014, 24(20):2930-2937.
[100] Dong Y Y, Deng Y J, Zeng J H, Song H Y, Liao S J. A high-performance composite ORR catalyst based on the synergy between binary transition metal nitride and nitrogen-doped reduced graphene oxide[J]. J. Mater. Chem. A, 2017, 5(12):5829-5837.
[101] Xiao M L, Zhang H, Chen Y T, Zhu J B, Gao L Q, Jin Z, Ge J J, Jiang Z, Chen S L, Liu C P, Xing W. Identification of binuclear Co2N5 active sites for oxygen reduction reaction with more than one magnitude higher activity than single atom CoN4 site[J]. Nano Energy, 2018, 46:396-403.
[102] Xiao M L, Chen Y T, Zhu J B, Zhang H, Zhao X, Gao L Q, Wang X, Zhao J, Ge J J, Jiang Z, Chen S L, Liu C P, Xing W. Climbing the apex of the ORR volcano plot via binuclear site construction: electronic and geometric engineering[J]. J. Am. Chem. Soc., 2019, 141(44):17763-17770.
[103] Xiao M L, Zhu J B, Li S, Li G R, Liu W W, Deng Y P, Bai Z Y, Ma L, Feng M, Wu T P, Su D, Lu J, Yu A P, Chen Z W. 3D-Orbital occupancy regulated Ir-Co atomic pair towards Superior bifunctional oxygen electrocatalysis[J]. ACS Catal., 2021, 11(14):8837-8846.
[104] Jin Z Y, Li P P, Meng Y, Fang Z W, Xiao D, Yu G H. Understanding the inter-site distance effect in single-atom catalysts for oxygen electroreduction[J]. Nat. Catal., 2021, 4(7):615-622.
[105] Luo F, Zhu J B, Ma S X, Li M, Xu R Z, Zhang Q, Yang Z H, Qu K G, Cai W W, Chen Z W. Regulated coordination environment of Ni single atom catalyst toward high-efficiency oxygen electrocatalysis for rechargeable zinc-air batteries[J]. Energy Storage Mater., 2021, 35:723-730.
文章导航

/