磷化物助力铂基催化剂甲醇电氧化的研究进展
收稿日期: 2021-06-21
修回日期: 2021-08-03
网络出版日期: 2021-08-05
版权
Advances of Phosphide Promoter Assisted Pt Based Catalyst for Electrooxidation of Methanol
Received date: 2021-06-21
Revised date: 2021-08-03
Online published: 2021-08-05
Copyright
过渡金属磷化物(TMP)作为一种理想的甲醇电氧化助催化剂,因其具有多功能活性位点、结构和组成可调、独特的物理化学性质和高效的多组分协同效应等优势而受到越来越多的关注。本文综述了过渡金属磷化物促进甲醇电氧化的研究进展,包括催化剂的制备及其催化甲醇电氧化的性能评估。首先,介绍了TMP对催化甲醇氧化反应的促进作用,然后在正文中讨论了基于不同金属中心的TMP催化剂体系的制备与性能研究。从电子效应和基于双功能催化机制的亲氧性来看,TMPs对催化甲醇氧化有明显的促进作用。最后,我们讨论了在催化剂理性设计及其催化机理探索和燃料电池装置应用中应注意的问题和挑战,希望对新型催化剂体系的设计和制备有一定的指导意义。
李萌 , 冯立纲 . 磷化物助力铂基催化剂甲醇电氧化的研究进展[J]. 电化学, 2022 , 28(1) : 2106211 . DOI: 10.13208/j.electrochem.210621
Transition metal phosphide (TMP), as an ideal catalytic promoter in methanol fuel oxidation, has received increased attention because of its multifunctional active sites, tunable structure and composition, as well as unique physical and chemical properties and efficient multi-composition synergistic effect. Some advances have been made for this catalyst system recently. In the current review, the research progresses of transition metal phosphides (TMPs) in the assisted electrooxidation of methanol including the catalysts fabrication and their performance evaluation for methanol oxidation are reviewed. The promotion effect of TMPs has been firstly presented and the catalyst systems based on the different metal centers of TMPs are then mainly discussed. It is concluded that the TMPs can greatly promote methanol oxidation through the electronic effect and the oxyphilic property based on the bifunctional catalytic mechanism. The problems and challenges in methanol fuel oxidation by using TMPs are also described at the end with the attention being paid to the precise catalyst design. The catalytic mechanism probing and application of the fuel cells device are proposed. The current effort might be helpful to the community for novel catalyst system design and fabrication.
[1] | Munjewar S S, Thombre S B, Mallick R K. Approaches to overcome the barrier issues of passive direct methanol fuel cell-Review[J]. Renew. Sust. Energ. Rev., 2017, 67: 1087-1104. |
[2] | Rigsby M A, Zhou W P, Lewera A, Duong H T, Bagus P S, Jaegermann W, Hunger R, Wieckowski A. experiment and theory of fuel cell catalysis: methanol and formic acid decomposition on nanoparticle Pt/Ru[J]. J. Phys. Chem. C, 2008, 112(39): 15595-15601. |
[3] | Cai Z C, Kamiko M, Yamada I, Yagi S. PtCo3 nanoparticle-encapsulated carbon nanotubes as active catalysts for methanol fuel cell anodes[J]. ACS Appl. Nano Mater., 2021, 4(2): 1445-1454. |
[4] | Abdelkareem M A, Lootah M A, Sayed E T, Wilberforce T, Alawadhi H, Yousef B A A, Olabi A G. Fuel cells for carbon capture applications[J]. Sci. Total Environ., 2021, 769: 144243. |
[5] | Casalegno A, Bresciani F, Zago M, Marchesi R. Experimental investigation of methanol crossover evolution during direct methanol fuel cell degradation tests[J]. J. Power Sources, 2014, 249: 103-109. |
[6] | Zhong C J, Luo J, Njoki P N, Mott D, Wanjala B, Loukra-kpam R, Lim S, Wang L Y, Fang B, Xu Z C. Fuel cell technology: nano-engineered multimetallic catalysts[J]. Energy Environ. Sci., 2008, 1(4): 454-466. |
[7] | Xia Z X, Zhang X M, Sun H, Wang S L, Sun G Q. Recent advances in multi-scale design and construction of materials for direct methanol fuel cells[J]. Nano Energy, 2019, 65: 104048. |
[8] | Glüsen A, Dionigi F, Paciok P, Heggen M, Müller M, Gan L, Strasser P, Dunin-Borkowski R E, Stolten D. Dealloyed PtNi-core-shell nanocatalysts enable significant lowering of Pt electrode content in direct methanol fuel cells[J]. ACS Catal., 2019, 9(5): 3764-3772. |
[9] | Li H Y, Wu X S, Tao X L, Lu Y, Wang Y W. Direct synjournal of ultrathin Pt nanowire arrays as catalysts for methanol oxidation[J]. Small, 2020, 16(33): 2001135. |
[10] | Zhang Y Q, Shi Y L, Chen R, Tao L, Xie C, Liu D D, Yan D F, Wang S Y. Enriched nucleation sites for Pt deposition on ultrathin WO3 nanosheets with unique interactions for methanol oxidation[J]. J. Mater. Chem. A, 2018, 6(45): 23028-23033. |
[11] | Wang M, Chen M, Yang Z Y, Wang Y T, Wang Y R, Liu G C, Lee J K, Wang X D. A study on fuel additive of methanol for room temperature direct methanol fuel cells[J]. Energy Convers. Manage., 2018, 168: 270-275. |
[12] | Bai G L, Liu C, Gao Z, Lu B Y, Tong X L, Guo X Y, Yang N Y. Atomic carbon layers supported Pt nanoparticles for minimized CO Poisoning and maximized methanol oxidation[J]. Small, 2019, 15(38): 1902951. |
[13] | Ramli Z A C, Kamarudin S K. Platinum-based catalysts on various carbon supports and conducting polymers for direct methanol fuel cell applications: a review[J]. Nano-scale Res. Lett., 2018, 13(1): 410. |
[14] | Luo F, Zhang Q, Qu K G, Guo L, Hu H, Yang Z, Cai W W, Cheng H S. Decorated PtRu electrocatalyst for concentrated direct methanol fuel cells[J]. ChemCatChem, 2019, 11(4): 1238-1243. |
[15] | Bai X X, Geng J R, Zhao S, Li H X, Li F J. Tunable hollow Pt@Ru dodecahedra via galvanic replacement for efficient methanol oxidation[J]. ACS Appl. Mater. Interfaces, 2020, 12(20): 23046-23050. |
[16] | Su N, Hu X L, Zhang J B, Huang H H, Cheng J X, Yu J C, Ge C. Plasma-induced synjournal of Pt nanoparticles supported on TiO2 nanotubes for enhanced methanol electro-oxidation[J]. Appl. Surf. Sci., 2017, 399: 403-410. |
[17] | Duan Y Q, Sun Y, Pan S Y, Dai Y, Hao L, Zou J L. Self-stable WP/C support with excellent cocatalytic functionality for Pt: enhanced catalytic activity and durability for methanol electro-oxidation[J]. ACS Appl. Mater. Interfaces, 2016, 8(49): 33572-33582. |
[18] | Chen S, Yang X B, Tong X L, Zhang F W, Zou H B, Qiao Y, Dong M, Wang J C, Fan W B. Design of 3D hollow porous heterogeneous nickel-cobalt phosphides for synergistically enhancing catalytic performance for electrooxidation of methanol[J]. ACS Appl. Mater. Interfaces, 2020, 12(31): 34971-34979. |
[19] | Wei D Y, Ma L, Gan M Y, Han S C, Shen J, Ding J J, Zhan W, Zhou C L, Zhong X J, Xie F. Pt-based catalyst decorated by bimetallic FeNi2P with outstanding CO tolerance and catalytic activity for methanol electrooxidation[J]. Int. J. Hydrogen Energy, 2020, 45(7): 4875-4886. |
[20] | Bao Y F, Wang F L, Gu X C, Feng L G. Core-shell structured PtRu nanoparticles@FeP promoter with an efficient nanointerface for alcohol fuel electrooxidation[J]. Nano-scale, 2019, 11(40): 18866-18873. |
[21] | Liu D N, Lu W B, Wang K Y, Du G, Asiri A M, Lu Q, Sun X P。 Cobalt phosphide nanowall array as an efficient 3D catalyst electrode for methanol electro-oxidation[J]. Nanotechnology, 2016, 27(44): 44LT02. |
[22] | Cui X Z, Zhu Y, Hua Z L, Feng J W, Liu Z W, Chen L S, Shi J L. SnO2 nanocrystal-decorated mesoporous ZSM-5 as a precious metal-free electrode catalyst for methanol oxidation[J]. Energ Environ Sci., 2015, 8(4): 1261-1266. |
[23] | Jiang X F, Wang X B, Shen L M, Wu Q, Wang Y N, Ma Y W, Wang X Z, Hu Z. High-performance Pt catalysts supported on hierarchical nitrogen-doped carbon nano-cages for methanol electrooxidation[J]. Chin. J. Catal., 2016, 37(7): 1149-1155. |
[24] | Yuwen L H, Xu F, Xue B, Luo Z M, Zhang Q, Bao B Q, Su S, Weng L X, Huang W, Wang L H. General synjournal of noble metal (Au, Ag, Pd, Pt) nanocrystal modified MoS2 nanosheets and the enhanced catalytic activity of Pd-MoS2 for methanol oxidation[J]. Nanoscale, 2014, 6(11): 5762-5769. |
[25] | Chang J F, Feng L G, Liu C P, Xing W, Hu X L. Ni2P enhances the activity and durability of the Pt anode catalyst in direct methanol fuel cells[J]. Energy Environ. Sci., 2014, 7(5): 1628. |
[26] | Liu H, Yang D W, Bao Y F, Yu X, Feng L G. One-step efficiently coupling ultrafine Pt-Ni2P nanoparticles as robust catalysts for methanol and ethanol electro-oxidation in fuel cells reaction[J]. J. Power Sources, 2019, 434: 226754. |
[27] | Wang F L, Fang B, Yu X, Feng L G. Coupling ultrafine Pt nanocrystals over the Fe2P surface as a robust catalyst for alcohol fuel electro-oxidation[J]. ACS Appl. Mater. In-terfaces, 2019, 11(9): 9496-9503. |
[28] | Li R X, Ma Z Z, Zhang F, Meng H J, Wang M, Bao X Q, Tang B, Wang X G. Facile Cu3P-C hybrid supported strategy to improve Pt nanoparticle electrocatalytic performance toward methanol, ethanol, glycol and formic acid electro-oxidation[J]. Electrochim. Acta, 2016, 220: 193-204. |
[29] | Chen S, Yang X, Tong X, Zhang F, Zou H, Qiao Y, Dong M, Wang J, Fan W. Design of 3D hollow porous heterogeneous nickel-cobalt phosphides for synergistically enhancing catalytic performance for electrooxidation of methanol[J]. ACS Appl. Mater. Interfaces, 2020, 12(31): 34971-34979. |
[30] | Housmans T H M, Koper M T M. Methanol oxidation on stepped Pt[n(111) × (110)] electrodes: a chronoamperometric study[J]. J. Phys. Chem. B, 2003, 107(33): 8557-8567. |
[31] | Watanabe M, Motoo S. Electrocatalysis by ad-atoms: Part III. Enhancement of the oxidation of carbon monoxide on platinum by ruthenium ad-atoms[J]. J. Electroanal. Chem. Interfacial Electrochem., 1975, 60(3): 275-283. |
[32] | Yajima T, Uchida H, Watanabe M. In-situ ATR-FTIR spectroscopic study of electro-oxidation of methanol and adsorbed CO at Pt-Ru alloy[J]. J. Phys. Chem. B, 2004, 10(8): 2654-2659. |
[33] | Norsko J K. Chemisorption on metal surfaces[J]. Rep. Prog. Phys., 1990, 53(10): 1253-1295. |
[34] | Nørskov J K. Electronic factors in catalysis[J]. Prog. Surf. Sci., 1991, 38(2): 103-144. |
[35] | Chang J F, Feng L G, Jiang K, Xue H G, Cai W B, Liu C P, Xing W. Pt-CoP/C as an alternative PtRu/C catalyst for direct methanol fuel cells[J]. J. Mater. Chem. A, 2016, 4(47): 18607-18613. |
[36] | Xu J Y, Wei X K, Costa J D, Lado J L, Owens-Baird B, Goncalves L P L, Fernandes S P S, Heggen M, Petrovykh D Y, Dunin-Borkowski R E, Kovnir K, Kolen’ko Y V. Interface engineering in nanostructured nickel phosphide catalyst for efficient and stable water oxidation[J]. ACS Catal., 2017, 7(8): 5450-5455. |
[37] | Chang J F, Feng L G, Liu C P, Xing W. Ni2P makes app-lication of the PtRu catalyst much stronger in direct meth-anol fuel cells[J]. ChemSusChem, 2015, 8(19): 3340-3347. |
[38] | Cao J M, Chen H L, Zhang X L, Zhang Y F, Liu X W. Gra-phene-supported platinum/nickel phosphide electrocatalyst with improved activity and stability for methanol oxidation[J]. RSC Adv., 2018, 8(15): 8228-8232. |
[39] | Wang Y J, Du C Y, Sun Y R, Han G K, Kong F P, Yin G P, Gao Y Z, Song Y. The enhanced CO tolerance of platinum supported on FeP nanosheet for superior catalytic activity toward methanol oxidation[J]. Electrochim. Acta, 2017, 254: 36-43. |
[40] | Cao H S, Li Z B, Xie Y, Xiao F, Wang H L, Wang X Y, Pan K, Cabot A. Hierarchical CoP nanostructures on nickel foam as efficient bifunctional catalysts for water splitting[J]. ChemSusChem, 2021, 14(4): 1094-1102. |
[41] | Ji L L, Wang J Y, Teng X, Meyer T J, Chen Z F. CoP nano-frames as bifunctional electrocatalysts for efficient overall water splitting[J]. ACS Catal., 2020, 10(1): 412-419. |
[42] | Zhu J L, He G Q, Shen P K. A cobalt phosphide on carbon decorated Pt catalyst with excellent electrocatalytic performance for direct methanol oxidation[J]. J. Power Sources, 2015, 275: 279-283. |
[43] | Feng L G, Li K, Chang J F, Liu C P, Xing W. Nanostructured PtRu/C catalyst promoted by CoP as an efficient and robust anode catalyst in direct methanol fuel cells[J]. Nano Energy, 2015, 15: 462-469. |
[44] | Li X, Wang H J, Yu H, Liu Z W, Wang H H, Peng F. Enhanced activity and durability of platinum anode catalyst by the modification of cobalt phosphide for direct methanol fuel cells[J]. Electrochim. Acta, 2015, 185: 178-183. |
[45] | Xiao W P, Zhang L, Bukhvalov D, Chen Z P, Zou Z Y, Shang L, Yang X F, Yan D Q, Han F Y, Zhang T R. Hierarchical ultrathin carbon encapsulating transition metal doped MoP electrocatalysts for efficient and pH-universal hydrogen evolution reaction[J]. Nano Energy, 2020, 70: 104445. |
[46] | Jiao Y Q, Yan H J, Wang R H, Wang X W, Zhang X M, Wu A P, Tian C G, Jiang B J, Fu H G. Porous plate-like MoP assembly as an efficient pH-universal hydrogen evolution electrocatalyst[J]. ACS Appl. Mater. Interfaces, 2020, 12(44): 49596-49606. |
[47] | Bai J, Li X, Wang A J, Prins R, Wang Y. Hydrodesulfurization of dibenzothiophene and its hydrogenated intermediates over bulk MoP[J]. J. Catal., 2012, 287: 161-169. |
[48] | Zhu J L, Huang S L, Key J L, Nie S X, Ma S J, Shen P K. Facile synjournal of a molybdenum phosphide (MoP) nanocomposite Pt support for high performance methanol oxidation[J]. Catal. Sci. Technol., 2017, 7(24): 5974-5981. |
[49] | Zhou C L, Gan M Y, Xie F, Ma L, Ding J J, Shen J, Han S C, Wei D Y, Zhan W. Pt nanoparticles coated on multiwalled carbon nanotubes by the modification of small-sized molybdenum phosphide for enhanced methanol electro-oxidation[J]. Ionics, 2020, 26(12): 6331-6340. |
[50] | Duan Y Q, Sun Y, Wang L, Dai Y, Chen B B, Pan S Y, Zou J L. Enhanced methanol oxidation and CO tolerance using oxygen-passivated molybdenum phosphide/carbon supported Pt catalysts[J]. J. Mater. Chem. A, 2016, 4(20): 7674-7682. |
[51] | Zhang C Y, Dai Y, Chen H, Ma Y Y, Jing B J, Cai Z, Duan Y Q, Tang B, Zou J L. Carbon-thin-layer protected WP with no passivation supported on acid-treated expanded graphite as efficient Pt Co-catalysts for methanol oxidation and oxygen reduction reactions[J]. J. Mater. Chem. A, 2018, 6(45): 22636-22644. |
[52] | Zhang F, Meng H J, Zhang W J, Wang M, Li J P, Wang X G. Nickel phosphide decorated Pt nanocatalyst with enhanced electrocatalytic properties toward common small organic molecule oxidation and hydrogen evolution reaction: A strengthened composite supporting effect[J]. Int. J. Hydrogen Energy, 2018, 43(6): 3203-3215. |
[53] | Li S, Tian Z Q, Liu Y, Jang Z, Hasan S W, Chen X, Tsiakaras P, Shen P K. Hierarchically skeletal multi-layered Pt-Ni nanocrystals for highly efficient oxygen reduction and methanol oxidation reactions[J]. Chin. J. Catal., 2021, 42(4): 648-657. |
/
〈 |
|
〉 |