一种基于电沉积3D花状CoS在自支撑石墨烯胶带电极上的非酶葡萄糖传感器的研究与应用
收稿日期: 2021-04-21
修回日期: 2021-06-30
网络出版日期: 2021-08-03
版权
A Flexible Enzymeless Glucose Sensor via Electrodepositing 3D Flower-like CoS onto Self-Supporting Graphene Tape Electrode
Received date: 2021-04-21
Revised date: 2021-06-30
Online published: 2021-08-03
Copyright
李江 , 李作鹏 , 白云峰 , 罗宿星 , 郭永 , 鲍雅妍 , 李容 , 刘海燕 , 冯锋 . 一种基于电沉积3D花状CoS在自支撑石墨烯胶带电极上的非酶葡萄糖传感器的研究与应用[J]. 电化学, 2022 , 28(1) : 2104211 . DOI: 10.13208/j.electrochem.210421
Three-dimensional (3D) nanostructural Flower-like cobalt sulfide (CoS) on flexible self-supporting graphene tape electrode (GTE) with remarkably electrocatalytic activity toward glucose was successfully prepared by electrodeposition. Structural characterizations revealed that the electrodeposited CoS was highly dispersed on GTE as an active material. The fabricated binder-free and self-standing CoS/GTE shows a good linear response in the range of 0.025 ~ 1.0 mmol·L-1, reaching a high glucose sensitivity value of 323.3 μA·(mmol·L -1)-1·cm-2 and a low detection limit of 8.5 μmol·L -1 (S/N = 3). Moreover, the as-prepared sensor was well applied for glucose determination in human serum. Thus, the self-supporting, binder-free, low-cost sensor has good potential as a promising device for practical quantitative analysis of glucose in human serum.
Key words: flexible electrode; flower-like CoS; electrodeposition; glucose sensor
[1] | Rahman M M, Ahammad A J S, Jin J H, Ahn S J, Lee J J. A comprehensive review of glucose biosensors based on nanostructured metal-oxides[J]. Sensors, 2010, 10(5): 4855-4866. |
[2] | Desmet C, Marquette C A, Blum L J, Doumèche B. Paper electrodes for bioelectrochemistry: Biosensors and biofuel cells[J]. Biosens. Bioelectron. 2016, 76(SI): 145-163. |
[3] | Gabriel E F M, Garcia P T, Cardoso T M G, Lopes F M, Martins F T, Coltro W K T. Highly sensitive colorimetric detection of glucose and uric acid in biological fluids using chitosan-modified paper microfluidic devices[J]. Analyst, 2016, 141(15): 4749-4756. |
[4] | Hwang D W, Lee S, Seo M, Chung T D. Recent advances in electrochemical non-enzymatic glucose sensors - a review[J]. Anal. Chim. Acta, 2018, 1033: 1-34. |
[5] | Qiu H W, Xu S C, Jiang S Z, Li Z, Chen P X, Gao S S, Zhang C, Feng D J. A novel graphene-based tapered optical fiber sensor for glucose detection[J]. Appl. Surf. Sci., 2015, 329: 390-395. |
[6] | Nicholas D, Logan K A, Sheng Y J, Gao J H, Farrell S, Dixon D, Callan B, McHale A P, Callan J F. Rapid paper based colorimetric detection of glucose using a hollow microneedle device[J]. Int. J. Pharm., 2018, 547(1-2): 244-249. |
[7] | Shoji A, Takahashi Y, Osato S, Sugawara M. An enzyme-modified capillary as a platform for simultaneous fluorometric detection of D-glucose and L-lactate[J]. Pharm. Biomed. Anal., 2019, 163: 1-8. |
[8] | Zhu C Z, Yang G H, Li H, Du D, Lin Y H. Electrochemical sensors and biosensors based on nanomaterials and nanostructures[J]. Anal. Chem., 2015, 87(1): 230-249. |
[9] | Mohamad N R, Marzuki N H C, Buang N A, Huyop F, Wahab R A. An overview of technologies for immobilization of enzymes and surface analysis techniques for immobilized enzymes[J]. Biotechnol. Biotechnol. Equip., 2015, 29(2): 205-220. |
[10] | Yu Y Y, Yang Y, Gu H, Zhou T S, Shi G Y. Size-tunable Pt nanoparticles assembled on functionalized ordered mesoporous carbon for the simultaneous and on-line detection of glucose and L-lactate in brain microdialysate[J]. Biosens. Bioelectron., 2013, 41: 511-518. |
[11] | Ye J S, Chen C W, Lee C L. Pd nanocube as non-enzymatic glucose sensor[J]. Sensor Actuat. B - Chem., 2015, 208: 569-574. |
[12] | Malhotra S, Tang Y J, Varshney P K. Non-enzymatic glucose sensor based on electrodeposition of platinum particles on polyaniline modified Pt electrode[J]. Anal. Bioanal. Electrochem., 2018, 10(6): 699-715. |
[13] | Wang R L, Liang X Y, Liu H Y, Cui L, Zhang X Y, Liu C J. Non-enzymatic electrochemical glucose sensor based on monodispersed stone-like PtNi alloy nanoparticles[J]. Microchim. Acta, 2018, 185(7): 339. |
[14] | Shim K, Lee W C, Park M S, Shahabuddin M, Yamauchi Y, Hossain M S A, Shim Y B, Kim J H. Au decorated core-shell structured Au@Pt for the glucose oxidation reaction[J]. Sensor Actuat. B - Chem., 2019, 278: 88-96. |
[15] | Yang J W, Liang X Y, Cui L, Liu H Y, Xie J B, Liu W X. A novel non-enzymatic glucose sensor based on Pt3Ru1 alloy nanoparticles with high density of surface defects[J]. Biosens. Bioelectron., 2016, 80: 171-174. |
[16] | Sheng Q, Mei H, Wu H M, Zhang X H, Wang S F. A highly sensitive non-enzymatic glucose sensor based on PtxCo1-x/C nanostructured composites[J]. Sensor Actuat. B - Chem., 2015, 207: 51-58. |
[17] | Koskun Y, Savk A, Sen B, Sen F. Highly sensitive glucose sensor based on monodisperse palladium nickel/activated carbon nanocomposites[J]. Anal. Chim. Acta, 2018, 1010: 37-43. |
[18] | Lai C H, Lu M Y, Chen L J. Metal sulfide nanostructures: synjournal, properties and applications in energy conversion and storage[J]. Mater. Chem., 2012, 22(1): 19-30. |
[19] | Wang J H, Cui W, Liu Q, Xing Z C, Asiri A M, Sun X P. Recent progress in cobalt-based heterogeneous catalysts for electrochemical water splitting[J]. Adv. Mater., 2016, 28(2): 215-230. |
[20] | Wu W Q, Yu B B, Wu H M, Wang S F, Xia Q H, Ding Y. Synjournal of tremella-like CoS and its application in sensing of hydrogen peroxide and glucose[J]. Mater. Sci. Eng. C, 2017, 70: 430-443. |
[21] | Qu P P, Gong Z N, Cheng H Y, Xiong W, Wu X, Pei P, Zhao R F, Zeng Y, Zhu Z H. Nanoflower-like CoS-decorated 3D porous carbon skeleton derived from rose for a high performance nonenzymatic glucose sensor[J]. RSC Adv., 2015, 5(129): 106661-106667. |
[22] | Meng A, Sheng L Y, Zhao K, Li Z J. A controllable honeycomb-like amorphous cobalt sulfide architecture directly grown on the reduced graphene oxide-poly(3,4-ethylenedioxythiophene) composite through electro-deposition for non-enzyme glucose sensing[J]. Mater. Chem. B, 2017, 5(45): 8934-8943. |
[23] | Sivakumar M, Sakthivel M, Chen S M. Simple synjournal of cobalt sulfide nanorods for efficient electrocatalytic oxidation of vanillin in food samples[J]. J. Colloid Interface Sci., 2017, 490: 719-726. |
[24] | Kang Z, Li Y, Cao S Y, Zhang Z H, Guo H J, Wu P W, Zhou L X, Zhang S C, Zhang X M, Zhang Y. 3D graphene foam/ZnO nanorods array mixed-dimensional heterostructure for photoelectrochemical biosensing[J]. Inorg. Chem. Front., 2018, 5(2): 364-369. |
[25] | Niu J A, Domenech-Carbo A, Primoa A, Garcia H. Uniform nanoporous graphene sponge from natural polysaccharides as a metal-free electrocatalyst for hydrogen generation[J]. RSC Adv., 2019, 9(1): 99-106. |
[26] | Han W J, Ren L, Gong L J, Qi X, Liu Y D, Yang L W, Wei X L, Zhong J X. Self-assembled three-dimensional graphene-based aerogel with embedded multifarious functional nanoparticles and its excellent photoelectrochemical activities[J]. ACS Sustainable Chem. Eng., 2014, 2(4): 741-748. |
[27] | Chen D M, Yang J J, Zhu Y, Zhang Y M, Zhu Y F. Fabrication of BiOI/graphene Hydrogel/FTO photoelectrode with 3D porous architecture for the enhanced photoelectrocatalytic performance[J]. Appl. Catal. B - Environ., 2018, 233: 202-212. |
[28] | Chen D, Zhang H, Liu Y, Li J H. Graphene and its deriva-tives for the development of solar cells, photoelectrochemical, and photocatalytic applications[J]. Energy Environ. Sci., 2013, 6(5): 1362-1387. |
[29] | Baig N, Saleh T A. Electrodes modified with 3D graphene composites: a review on methods for preparation, properties and sensing applications[J]. Microchim. Acta, 2018, 185(6): 283. |
[30] | Ito Y, Tanabe Y, Sugawara K, Koshino M, Takahashi T, Tanigaki K., Aokighi H, Chen M W. Three-dimensional porous graphene networks expand graphene-based electronic device applications[J]. Phys. Chem. Chem. Phys., 2018, 20(9): 6024-6033. |
[31] | Wang L, Yu J, Zhang Y Y, Yang H, Miao L F, Song Y H. Simple and large-scale strategy to prepare flexible graphene tape electrode[J]. ACS Appl. Mater. Interfaces, 2017, 9(10): 9089-9095. |
[32] | Lange B, Lovric M, Scholz F. The catalytic action of adsorbed thiocyanate ions and thiourea in the electron transfer from glassy carbon to solid copper(I) selenide and copper(I) sulfide particles[J]. Electroanal. Chem., 1996, 418(1-2): 21-28. |
[33] | Nan K K, Du H F, Su L, Li C M. Directly electrodeposited cobalt sulfide nanosheets as advanced catalyst for oxygen evolution reaction[J]. ChemistrySelect, 2018, 3(25): 7081-7088. |
[34] | Gao R, Liu L, Hu Z B, Zhang P, Cao X Z, Wang B Y, Liu X F. The role of oxygen vacancies in improving the performance of CoO as a bifunctional cathode catalyst for rechargeable Li-O2 batteries[J]. Mater. Chem. A, 2015, 3(34): 17598-17605. |
[35] | Mao M L, Jiang L, Wu L C, Zhang M, Wang T H. The structure control of ZnS/graphene composites and their excellent properties for lithium-ion batteries[J]. Mater. Chem. A, 2015, 3(25): 13384-13389. |
[36] | Shi J H, Li X C, He G H, Zhang L, Li M. Electrodeposition of high-capacitance 3D CoS/graphene nanosheets on nickel foam for high-performance aqueous asymmetric supercapacitors[J]. Mater. Chem. A, 2015, 3(41): 20619-20626. |
[37] | Bahadur S, Gong D L. The investigation of the action of fillers by XPS studies of the transfer films of PEEK and its composites containing CuS and CuF2[J]. Wear, 1993, 160(1): 131-138. |
[38] | Huang K J, Zhang J Z, Shi G W, Liu Y M. One-step hydrothermal synjournal of two-dimensional cobalt sulfide for high-performance supercapacitors[J]. Mater. Lett., 2014, 131: 45-48. |
[39] | Liu Y W, Cao X Q, Kong R M, Du G, Asiri A M, Lu Q, Sun X P. Cobalt phosphide nanowire array as an effective electrocatalyst for non-enzymatic glucose sensing[J]. Mater. Chem. B, 2017, 5: 1901-1904. |
[40] | Chakrabartty S, Karmakar S, Raj C R. An electrocatalytically active nanoflake-like Co9S8-CoSe2 heterostructure for overall water splitting[J]. ACS Appl. Nano Mater., 2020, 3(11): 11326-11334. |
[41] | Park S, Boo H, Chung T D. Electrochemical non-enzymatic glucose sensors[J]. Anal. Chim. Acta, 2006, 556(1): 46-57. |
[42] | Shu Y, Li B, Chen J Y, Xu Q, Pang H, Hu X Y. Facile synjournal of ultrathin nickel-cobalt phosphate 2D nanosheets with enhanced electrocatalytic activity for glucose oxidation[J]. ACS Appl. Mater. Interfaces, 2018, 10(3): 2360-2367. |
[43] | Babu K J, Kumar T R, Yoo D J, Phang S M, Kumar G G. Electrodeposited nickel cobalt sulfide flowerlike architectures on disposable cellulose filter paper for enzyme-free glucose sensor applications[J]. ACS Sustainable Chem. Eng., 2018, 6(12): 16982-16989. |
[44] | Bao L, Li T, Chen S, Peng C, Li L, Xu Q, Chen Y S, Ou E C, Xu W J. 3D graphene frameworks/Co3O4 composites electrode for high-performance supercapacitor and enzymeless glucose detection[J]. Small, 2017, 13(5): 1602077. |
[45] | Devasenathipathy R, Karuppiah C, Chen S M, Palanisamy S, Lou B S, Ali M A, Al-Hemaid F M A. A sensitive and selective enzyme-free amperometric glucose biosensor using a composite from multi-walled carbon nanotubes and cobalt phthalocyanine[J]. RSC Adv., 2015, 5(34): 26762-26768. |
[46] | Lee K K, Loh P Y, Sow C H, Chin W S. CoOOH nano-sheets on cobalt substrate as a non-enzymatic glucose sensor[J]. Electrochem. Comm., 2012, 20: 128-132. |
[47] | Sun Q Q, Wang M, Bao S J, Wang Y C, Gu S. Analysis of cobalt phosphide (CoP) nanorods designed for non-enzyme glucose detection[J]. Analyst, 2016, 141(1): 256-260. |
/
〈 |
|
〉 |