欢迎访问《电化学(中英文)》期刊官方网站,今天是
论文

一种用于电还原CO2生成甲酸的高性能连续流动式MEA反应器

  • 刘佩璇 ,
  • 彭芦苇 ,
  • 何瑞楠 ,
  • 李露露 ,
  • 乔锦丽
展开
  • 1.东华大学环境科学与工程学院,上海 201620
    2.上海市污染控制与生态安全研究所,上海 200092

收稿日期: 2021-04-23

  修回日期: 2021-06-06

  网络出版日期: 2021-06-10

版权

《电化学》编辑部, 2022, 版权所有,未经授权,不得转载、摘编本刊文章,不得使用本刊的版式设计。

A High-Performance Continuous-Flow MEA Reactor for Electroreduction CO2 to Formate

  • Pei-Xuan Liu ,
  • Lu-Wei Peng ,
  • Rui-Nan He ,
  • Lu-Lu Li ,
  • Jin-Li Qiao
Expand
  • 1. College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China
    2. Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
#Same contribution to this work.
* Tel: (86-21)67792379, E-mail: qiaojl@dhu.edu.cn

Received date: 2021-04-23

  Revised date: 2021-06-06

  Online published: 2021-06-10

Copyright

, 2022, Copyright reserved © 2022

摘要

电化学二氧化碳还原反应(CO2RR)是一种利用间歇性可再生电力缓解环境问题,并且生产液体燃料和工业化学品的有前途的方法。然而,传统的H型反应器由于在电解液中较低的CO2溶解度以及两电极之间较大的极距而导致高欧姆电阻,严重限制了CO2RR的电化学性能,不利于CO2RR在工业应用的发展。在本文中,我们设计了一种基于0.5 mol·L-1 KHCO3的自生长Cu/Sn双金属电催化剂的高性能连续流膜电极组件(MEA)反应器,用于将CO2转化为甲酸。与H型反应器相比,流动式MEA反应器不仅显示出优异的电流密度(-1.11 VRHE时电流密度为66.41 mA·cm-2),而且还保持了较高的甲酸法拉第效率(89.56%),并且能够稳定工作至少20 h。本文还设计了一套新型CO2RR系统,可以有效地分离气态/液态产物。出乎意料的是,在-0.91 VRHE且电池电压为3.17 V时,甲酸的生产率为163 μmol·h-1·cm-2。本文为克服电化学CO2RR的传质限制以及分离液体和气体产物提供了一条新途径。

本文引用格式

刘佩璇 , 彭芦苇 , 何瑞楠 , 李露露 , 乔锦丽 . 一种用于电还原CO2生成甲酸的高性能连续流动式MEA反应器[J]. 电化学, 2022 , 28(1) : 2104231 . DOI: 10.13208/j.electrochem.210423

Abstract

The electrochemical carbon dioxide reduction reaction (CO2RR) is a promising approach to produce liquid fuels and industrial chemicals by utilizing intermittent renewable electricity for mitigating environmental problems. However, the traditional H-type reactor seriously limits the electrochemical performance of CO2RR due to the low CO2 solubility in electrolyte, and high ohmic resistance caused by the large distance between two electrodes, which is unbeneficial for industrial application. Herein, we demonstrated a high-performance continuous flow membranes electrode assembly (MEA) reactor based on a self-growing Cu/Sn bimetallic electrocatalyst in 0.5 mol·L-1 KHCO3 for converting CO2 to formate. Compared with an H-type cell, the MEA reactor not only shows the excellent current density (66.41 mA·cm-2 at -1.11 VRHE), but also maintains high Faraday efficiency of formate (89.56%) with the steady work around 20 h. Notably, we also designed the new CO2RR system to effectively separate the gaseous/liquid production. Surprisingly, the production rate of formate reached 163 μmol·h-1·cm-2 at -0.91 VRHE with the cell voltage of 3.17 V. This study provides a promising path to overcome mass transport limitations of the electrochemical CO2RR and to separate liquid from gas products.

参考文献

[1] Daiyan R, Saputera W H, Masood H, Leverett J, Lu X Y, Amal R. A disquisition on the active sites of heterogeneous catalysts for electrochemical reduction of CO2 to value-added chemicals and fuel[J]. Adv. Energy Mater., 2020, 11(10): 1903796.
[2] Song R B, Zhu W, Fu J, Chen Y, Liu L, Zhang J R, Lin Y, Zhu J J. Electrode materials engineering in electrocatalytic CO2 reduction: energy input and conversion efficiency[J]. Adv. Mater., 2020, 27(32): 1902106.
[3] Yao Y, Wang J, Shahid U B, Gu M, Wang H J, Li H, Shao M H. Electrochemical synjournal of ammonia from nitrogen under mild conditions: current status and challenges, electrochem[J]. Energy Rev., 2020, 3(2): 239-270.
[4] Al-Mamoori A, Krishnamurthy A, Rownaghi A A, Rezaei F. Carbon capture and utilization update[J]. Energy Technology, 2017, 5(6): 834-849.
[5] Kondratenko E V, Baltrusaitis G, Mul J, Larrazabal G O, Perez-Ramirez J. Status and perspectives of CO2 conversion into fuels and chemicals by catalytic, photocatalytic and electrocatalytic processes[J]. Energy & Environ. Sci., 2013, 6(11): 3112-3135.
[6] Jhong H R, Ma S C, Kenis P J A. Electrochemical conversion of CO2 to useful chemicals: current status, remaining challenges, and future opportunities[J]. Curr. Opin. Chem. Eng., 2013, 2(2): 191-199.
[7] Lu Q, Jiao F. Electrochemical CO2 reduction: Electrocatalyst, reaction mechanism, and process engineering[J]. Nano Energy, 2016, 29(SI): 439-456.
[8] Zheng X, Cai Z P, Li Y S. Data linkage in smart internet of things systems: A consideration from a privacy perspective[J]. IEEE Commun. Mag., 2018, 56(9): 55-61.
[9] Liu L X, Zhou Y, Chang Y C, Zhang J R, Jiang L P, Zhu W, Lin Y. Tuning Sn3O4 for CO2 reduction to formate with ultra-high current density[J]. Nano Energy, 2020, 77: 105296.
[10] Li Q Q, Rao X F, Sheng J W, Xu J, Yi J, Liu Y Y, Zhang J J. Energy storage through CO2 electroreduction: A brief review of advanced Sn-based electrocatalysts and electrodes[J]. J. CO2 Util., 2018, 27: 48-59.
[11] Jiang X X, Wang X K, Liu Z J, Wang Q L, Xiao X, Pan H P, Li M, Wang J W, Shao Y, Peng Z Q, Shen Y, Wang M K. A highly selective tin-copper bimetallic electrocatalyst for the electrochemical reduction of aqueous CO2 to formate[J]. Appl. Catal. B: Environ., 2019, 259: 118040.
[12] Xiong W, Yang J, Shuai L, Hou Y, Qiu M, Li X Y, Leung M K H. CuSn alloy nanoparticles on nitrogen-doped graphene for electrocatalytic CO2 reduction[J]. ChemEle-ctroChem, 2019, 6(24): 5951-5957.
[13] Chen A, Lin B L. A simple framework for quantifying ele-ctrochemical CO2 fixation[J]. Joule, 2018, 2(4): 594-606.
[14] Lee J, Lim J, Roh C W, Whang H S, Lee H. Electrochemical CO2 reduction using alkaline membrane electrode assembly on various metal electrodes[J]. J. CO2 Util., 2019, 31: 244-250.
[15] Ju W, Jiang F, Ma H, Pan Z, Zhao Y B, Pagani F, Rentsch D, Wang J, Battaglia C. Electrocatalytic reduction of gas-eous CO2 to CO on Sn/Cu-nanofiber-based gas diffusion electrodes[J]. Adv. Energy Mater., 2019, 9(32): 1901514.
[16] Kim H Y, Choi I, Ahn S H, Hwang S J, Yoo S J, Han J, Kim J, Park H, Jang J H, Kim S K. Analysis on the effect of operating conditions on electrochemical conversion of carbon dioxide to formic acid[J]. Int. J. Hydrogen Energy, 2014, 39(29): 16506-16512.
[17] Gabardo C M, O’Brien C P, Edwards J P, McCallum C, Dinh Y, Xu C T, Sargent J, Li E H, Sinton D. Continuous carbon dioxide electroreduction to concentrated multi-carbon products using a membrane electrode assembly[J]. Joule, 2019, 3(11): 2777-2791.
[18] Zhang F, Jin Z, Chen C, Tang Y, Mahyoub S A, Yan S, Cheng Z. Electrochemical conversion of CO2 to CO into a microchannel reactor system in the case of aqueous electrolyte[J]. Ind. Eng. Chem. Res., 2020, 59(13): 5664-5674.
[19] Yang H Z, Kaczur J J, Sajjad S D, Masel R I. Electrochemical conversion of CO2 to formic acid utilizing sustainion (TM) membranes[J]. J. CO2 Util., 2017, 20: 208-217.
[20] Larrazabal G O, Strom-Hansen P, Heli J P, Zeiter K, Therkildsen K T, Chorkendorff I, Seger B. Analysis of mass flows and membrane cross-over in CO2 reduction at high current densities in an MEA-type electrolyzer[J]. ACS Appl. Mater. Inter., 2019, 11(44): 41281-41288.
[21] Liu J Y, Peng L W, Zhou Y, Lv L, Fu J, Lin J, Guay D, Qiao J L. Metal-organic-frameworks-derived Cu/Cu2O catalyst with ultrahigh current density for continuous-flow CO2 electroreduction[J]. ACS Sustain. Chem. Eng., 2019, 7(18): 15739-15746.
[22] Gong Q F, Ding P, Xu M Q, Zhu X R, Wang M Y, Deng J, Ma Q, Han N, Zhu Y, Lu J, Feng Z X, Li Y F, Zhou W, Li Y G. Structural defects on converted bismuth oxide nanotubes enable highly active electrocatalysis of carbon dioxide reduction[J]. Nat. Commun., 2019, 10(1): 2807.
[23] Cifrain M, Kordesch K V. Advances, aging mechanism and lifetime in AFCs with circulating electrolytes[J]. J. Power Sources, 2004, 127: 234-242.
[24] Peng L W, Wang Y X, Masood I, Zhou B, Wang Y F, Lin J, Qiao J L, Zhang F Y. Self-growing Cu/Sn bimetallic electrocatalysts on nitrogen-doped porous carbon cloth with 3D-hierarchical honeycomb structure for highly active carbon dioxide reduction[J]. Appl. Catal. B-Environ., 2020, 264: 118447.
[25] Xiang H, Miller H A, Bellini M, Christensen H, Scott K, Rasul S, Yu E H. Production of formate by CO2 electrochemical reduction and its application in energy storage[J]. Sustain. Energ. Fuels, 2020, 4(1): 277-284.
[26] Hatsukade T, Kuhl K P, Cave E R, Abram D N, Jaramillo T F. Insights into the electrocatalytic reduction of CO2 on metallic silver surfaces[J]. Phys. Chem. Chem. Phys., 2014, 16(27): 138-149.
[27] Burdyny T, Smith W A. CO2 reduction on gas-diffusion electrodes and why catalytic performance must be assessed at commercially-relevant conditions[J]. Energ. Environ. Sci., 2019, 12(5): 1442-1453.
文章导航

/