欢迎访问《电化学(中英文)》期刊官方网站,今天是
论文

鲁米诺/氨基磺酸电化学发光及其多巴胺检测应用

  • Tesfaye Hailemariam Barkae ,
  • Mohamed Ibrahim Halawa ,
  • Tadesse Haile Fereja ,
  • Shimeles Addisu Kitte ,
  • 马显贵 ,
  • 陈业权 ,
  • 徐国宝
展开
  • 1.中国科学院长春应用化学研究所电分析化学国家重点实验室,吉林 长春 130022
    2.中国科学技术大学应用化学与工程学院,安徽 合肥 230026
    3.Wolkite university, College of natural & computational science, Department of chemistry,P.O Box 07, Wolkite, Ethiopia
    4.Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Mansoura University, 35516, Mansoura, Egypt
    5.深圳大学化学与环境工程学院及物理与光电工程学院,深圳 广东 518000
    6.Ambo University, College of Medicine and Health Sciences, Department of Pharmacy, P. O. Box 19, Ambo, Ethiopia
    7.Jimma University, College of Natural Sciences, Department of Chemistry, P. O. Box 378, Jimma, Ethiopia

收稿日期: 2021-02-02

  修回日期: 2021-03-08

  网络出版日期: 2021-03-15

Luminol/Sulfamic Acid Electrochemiluminescence and Its Application for Dopamine Detection

  • Tesfaye Hailemariam Barkae ,
  • Mohamed Ibrahim Halawa ,
  • Tadesse Haile Fereja ,
  • Shimeles Addisu Kitte ,
  • Xian-Gui Ma ,
  • Ye-Quan Chen ,
  • Guo-Bao Xu
Expand
  • 1. State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, Jilin,China
    2. School of Applied chemistry and Engineering, University of Science and Technology of China, Hefei 230026, Anhui, China
    3. Wolkite university, College of Natural & Computational Science, Department of Chemistry, P.O Box 07, Wolkite, Ethiopia
    4. Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Mansoura University, 35516, Mansoura, Egypt
    5. College of Chemistry and Environmental Engineering and College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, Guangdong, China
    6. Ambo University, College of Medicine and Health Sciences, Department of Pharmacy, P. O. Box 19, Ambo, Ethiopia
    7. Jimma University, College of Natural Sciences, Department of Chemistry, P. O. Box 378, Jimma, Ethiopia
* Tel: (86-431)85262747, E-mail: guobaoxu@ciac.ac.cn

Received date: 2021-02-02

  Revised date: 2021-03-08

  Online published: 2021-03-15

摘要

在本文中,我们首次观察到氨基磺酸可以显著增强鲁米诺电化学发光,而且鲁米诺电化学发光的强度随着氨基磺酸浓度在0.1 μmol·L-1至500 μmol·L-1范围增加而线性增加。同时,我们观察到多巴胺可以显著猝灭鲁米诺-氨基磺酸电化学发光。基于该猝灭现象,我们建立了多巴胺的电化学发光分析方法,该方法的线性范围为0.5至20 μmol·L-1,检出限为30 nmol·L-1。该方法具有较好的选择性,尿酸、抗坏血酸、糖和一些氨基酸对电化学发光影响较小。采用标准加入法,成功地将鲁米诺-氨基磺酸体系用于尿液中多巴胺的电化学发光测定,回收率为103% ~ 105%。另外,我们还考察了多巴胺的猝灭机理,并用Stern-Volmer方程计算了的动态猝灭常数。

本文引用格式

Tesfaye Hailemariam Barkae , Mohamed Ibrahim Halawa , Tadesse Haile Fereja , Shimeles Addisu Kitte , 马显贵 , 陈业权 , 徐国宝 . 鲁米诺/氨基磺酸电化学发光及其多巴胺检测应用[J]. 电化学, 2021 , 27(2) : 168 -176 . DOI: 10.13208/j.electrochem.201247

Abstract

Herein, sulfamic acid (SA) was utilized, for the first time, to enhance significantly the luminol electrochemiluminescence (ECL). With the SA concentration increased from 0.1 μmol·L-1 to 500 μmol·L-1 the ECL intensity increased proportionally. The developed luminol/SA ECL system was employed to detect dopamine (DA) based on its prominent quenching effect. The Stern-Volmer equation of Io/I= 1+Ksv[DA] could be applied to express well the quenching mechanism of DA in the luminol/SA ECL system. The calibration plot showed that the increase in the DA concentration from 0.5 to 20 μmol·L-1 decreased linearly the ECL intensity with a detection limit of 30 nmol·L-1. The luminol/SA ECL system was successfully carried out for DA detection in urine real sample by employing the standard addition method with the excellent recoveries of 103% ~ 105%. Selectivity of the as-developed ECL system was also investigated by using uric acid, ascorbic acid, sugars and amino acids. The results indicated that the ECL intensities changed negligibly in the presence of other substances.

参考文献

[1] Hanif S, Han S, John P, Gao W Y, Kitte S A, Xu G B. Electrochemiluminescence of luminol-tripropylamine system[J]. Electrochim. Acta, 2016,196:245-251.
[2] Liu Z Y, Qi W J, Xu G B. Recent advances in electrochemiluminescence[J]. Chem. Soc. Rev., 2015,44(10):3117-3142.
[3] Richter M M. Electrochemiluminescence (ECL)[J]. Chem. Rev., 2004,104(6):3003-3036.
[4] Sakura S. Electrochemiluminescence of hydrogen peroxide-luminol at a carbon electrode[J]. Anal. Chim. Acta, 1992,262(1):49-57.
[5] Hanif S, Han S, John P, Gao W Y, Kitte S A, Xu G B. Electrochemiluminescence of luminol-tripropylamine system[J]. Electrochim. Acta, 2016,196:245-251.
[6] Cao Y L, Yuan R, Chai Y Q, Mao L, Niu H, Liu H J, Zhuo Y. Ultrasensitive luminol electrochemiluminescence for protein detection based on in situ generated hydrogen peroxide as coreactant with glucose oxidase anchored AuNPs@MWCNTs labeling[J]. Biosens. Bioelectron., 2012,31(1):305-309.
[7] S Shkir M, Riscob B, Ganesh V, et al. Crystal growth, structural, crystalline perfection, optical and mechanical properties of Nd3+ doped sulfamic acid (SA) single crystals [J]. Cryst. Growth, 2013,380:228-235.
[8] Freeling F, Scheurer M, Sandholzer A, Armbruster D, Nodler K, Schulz M, Ternes T A, Wick A. Under the radar - Exceptionally high environmental concentrations of the high production volume chemical sulfamic acid in the urban water cycle[J]. Water Res., 2020,175:115706.
[9] Upadhyay N, Pujar M G, George R P, Philip J. Development of a sulfamic acid-based chemical formulation for effective cleaning of modified 9Cr-1Mo steel steam generator tubes[J]. Trans. Indian Inst. Met., 2020,73(2):343-352.
[10] Winum J Y, Scozzafava A, Montero J L, Supuran C T. Sulfamates and their therapeutic potential[J]. Med. Res. Rev., 2005,25(2):186-228.
[11] B. Khalili, M. Rimaz, Tondro T. DFT study of N-substituted sulfamic acid derivatives acidity in aqueous media and gas phase[J]. Sci. Iran., 2014,21:2021-2028.
[12] Lin K N, Xu J, Dong X, Huo Y L, Yuan D X, Lin H, Zhang Y B. An automated spectrophotometric method for the direct determination of nitrite and nitrate in seawater: Nitrite removal with sulfamic acid before nitrate reduction using the vanadium reduction method[J]. Microchem. J., 2020,158:105272.
[13] Kim D S, Kang E S, Baek S, Choo S S, Chung Y H, Lee D, Min J, Kim T H. Electrochemical detection of dopamine using periodic cylindrical gold nanoelectrode arrays[J]. Sci. Rep., 2018,8(1):14049.
[14] Ega?a L A, Cuevas R A, Baust T B, Parra L A, Leak R K, Hochendoner S, Pe?a K, Quiroz M, Hong W C, Dorostkar M M, Janz R, Sitte H H, Torres G E. Physical and functional interaction between the dopamine transporter and the synaptic vesicle protein synaptogyrin-3[J]. J. Neurosci. Res., 2009,29(14):4592-4604.
[15] Stanwood G D. Chapter 9 - Dopamine and Stress[M] //Fink G (editor), Stress: Physiology, Biochemistry, and Pathology, Academic Press, 2019: 105-114.
[16] Khudaish E A, Al-Ajmi K Y, Al-Harthi S H, Al-Hinai A T. A solid state sensor based polytyramine film modified electrode for the determination of dopamine and ascorbic acid in a moderately acidic solution[J]. J. Electroanal. Chem., 2012,676:27-34.
[17] Colín-Orozco E, Ramírez-Silva M T, Corona-Avendaéo S, Romero-Romo M, Palomar-Pardavé M. Electrochemical quantification of dopamine in the presence of ascorbic acid and uric acid using a simple carbon paste electrode modified with SDS micelles at pH 7[J]. Electrochim. Acta, 2012,85:307-313.
[18] Tang L J, Li S, Han F, Liu L Q, Xu L G, Ma W, Kuang H, Li A K, Wang L B, Xu C L. SERS-active Au@Ag nanorod dimers for ultrasensitive dopamine detection[J]. Biosens. Bioelectron., 2015,71:7-12.
[19] Wei X, Zhang Z D, Wang Z H. A simple dopamine detection method based on fluorescence analysis and dopamine polymerization[J]. Microchem. J., 2019,145:55-58.
[20] Ankireddy S R, Kim J. Selective detection of dopamine in the presence of ascorbic acid via fluorescence quenching of InP/ZnS quantum dots[J]. Int. J. Nanomedicine, 2015,10:113-119.
[21] Huang H, Bai J, Li J, Lei L L, Zhang W J, Yan S J, Li Y X. Fluorescence detection of dopamine based on the polyphenol oxidase-mimicking enzyme[J]. Anal. Bioanal. Chem., 2020,412(22):5291-5297.
[22] Wu B N, Miao C C, Yu L L, Wang Z Y, Huang C S, Jia N Q. Sensitive electrochemiluminescence sensor based on ordered mesoporous carbon composite film for dopamine[J]. Sens. Actuators B Chem., 2014,195:22-27.
[23] Stewart A J, Hendry J, Dennany L. Whole blood electrochemiluminescent detection of dopamine[J]. Anal. Chem., 2015,87(23):11847-11853.
[24] Peng H P, Deng H H, Jian M L, Liu A L, Bai F Q, Lin X H, Chen W. Electrochemiluminescence sensor based on methionine-modified gold nanoclusters for highly sensitive determination of dopamine released by cells[J]. Microchim. Acta, 2017,184(3):735-743.
[25] Kim Y R, Bong S, Kang Y J, Yang Y, Mahajan R K, Kim J S, Kim H. Electrochemical detection of dopamine in the presence of ascorbic acid using graphene modified electrodes[J]. Biosens. Bioelectron., 2010,25(10):2366-2369.
[26] Ma X Y, Chao M Y, Wang Z X. Electrochemical detection of dopamine in the presence of epinephrine, uric acid and ascorbic acid using a graphene-modified electrode[J]. Anal. Methods, 2012,4(6):1687-1692.
[27] Li Z, Zhang H M, Zha Q B, Zhai C Y, Li W B, Zeng L X, Zhu M S. Photo-electrochemical detection of dopamine in human urine and calf serum based on MIL-101 (Cr)/carbon black[J]. Microchim. Acta, 2020,187(9):526.
[28] Venton B J, Cao Q. Fundamentals of fast-scan cyclic vol-tammetry for dopamine detection[J]. Analyst, 2020,145(4):1158-1168.
[29] Zhao H X, Mu H, Bai Y H, Yu H, Hu Y M. A rapid method for the determination of dopamine in porcine muscle by pre-column derivatization and HPLC with fluorescence detection[J]. J. Pharm. Anal., 2011,1(3):208-212.
[30] Rao P S, Rujikarn N, Luber J M, Tyras D H. A specific sensitive HPLC method for determination of plasma dopamine[J]. Chromatographia, 1989,28(5):307-310.
[31] Wen D, Liu W, Herrmann A K, Haubold D, Holzschuh M, Simon F, Eychmüller A. Simple and sensitive colorimetric detection of dopamine based on assembly of cyclodextrin-modified Au nanoparticles[J]. Small, 2016,12(18):2439-2442.
[32] Kong B, Zhu A W, Luo Y P, Tian Y, Yu Y Y, Shi G Y. Sensitive and selective colorimetric visualization of cerebral dopamine based on double molecular recognition[J]. Angew. Chem. Int. Ed., 2011,50(8):1837-1840.
[33] Kaya M, Volkan M. New approach for the surface enhanced resonance raman scattering (SERRS) detection of dopamine at picomolar (pM) levels in the presence of ascorbic acid[J]. Anal. Chem., 2012,84(18):7729-7735.
[34] Figueiredo M L B, Martin C S, Furini L N, Rubira R J G, Batagin-Neto A, Alessio P, Constantino C J L. Surface-enhanced Raman scattering for dopamine in Ag colloid: Adsorption mechanism and detection in the presence of interfering species[J]. Appl. Surf. Sci., 2020,522:146466.
[35] Kitte S A, Wang C, Li S P, Zholudov Y, Qi L M, Li J P, Xu G B. Electrogenerated chemiluminescence of tris(2,2'-bipyridine)ruthenium(II) using N-(3-aminopropyl)diethanolamine as coreactant[J]. Anal. Bioanal. Chem., 2016,408(25):7059-7065.
[36] Hui P, Zhang L, Gao W Y, Zuo H J, Qi L M, Kitte S A, Li Y H, Xu G B. Detection of sodium dehydroacetate by Tris(2,2′-bipyridine)ruthenium(II) electrochemiluminescence[J]. ChemElectroChem., 2017,4(7):1702-1707.
[37] Fereja T H, Wang C, Liu F S, Guan Y R, Xu G B. A high-efficiency cathodic sodium nitroprusside/luminol/H2O2 electrochemiluminescence system in neutral media for the detection of sodium nitroprusside, glucose, and glucose oxidase[J]. Analyst, 2020,145(20):6649-6655.
[38] Bancirova M. Sodium azide as a specific quencher of singlet oxygen during chemiluminescent detection by luminol and Cypridina luciferin analogues[J]. Luminescence, 2011,26(6):685-688.
[39] Gao W Y, Wang C, Muzyka K, Kitte S A, Li J P, Zhang W, Xu G B. Artemisinin-luminol chemiluminescence for forensic bloodstain detection using a smart phone as a detector[J]. Anal. Chem., 2017,89(11):6160-6165.
[40] Fereja T H, Kitte S A, Gao W Y, Yuan F, Snizhko D, Qi L M, Nsabimana A, Liu Z Y, Xu G B. Artesunate-luminol chemiluminescence system for the detection of hemin[J]. Talanta, 2019,204:379-385.
[41] Buettner G R, Ng C F, Wang M, Rodgers V G J, Schafer F Q. A new paradigm: Manganese superoxide dismutase influences the production of H2O2 in cells and thereby their biological state[J]. Free Radical Biol. Med., 2006,41(8):1338-1350.
[42] Khaket T P, Ahmad R. Biochemical studies on hemoglobin modified with reactive oxygen species (ROS)[J]. Appl. Biochem. Biotechnol., 2011,164(8):1422-1430.
[43] Rowley D, Halliwell B. Formation of hydroxyl radicals from hydrogen peroxide and iron salts by superoxide- and ascorbate-dependent mechanisms: relevance to the pathology of rheumatoid disease[J]. Clin. Sci., 1983,64(6):649-653.
[44] Whitman C L. Titrimetric determination of sulfamic acid[J]. Anal. Methods, 1957,29(11):1684-1685.
[45] Wahba M E K, El-Enany N, Belal F. Application of the Stern-Volmer equation for studying the spectrofluorimetric quenching reaction of eosin with clindamycin hydrochloride in its pure form and pharmaceutical preparations[J]. Anal. Methods, 2015,7(4):10445-10451.
[46] Gong A Q, Zhu X S, Hu Y Y, Yu S H. A fluorescence spectroscopic study of the interaction between epristeride and bovin serum albumine and its analytical application[J]. Talanta, 2007,73(4):668-673.
[47] Parajuli S, Jing X H, Miao W J. Electrogenerated chemiluminescence (ECL) quenching of the Ru(bpy)32+/TPrA system by the explosive TNT[J]. Electrochim. Acta, 2015,180:196-201.
文章导航

/