MoS2/GQDs催化剂的制备及微生物电解池的产氢性能研究
收稿日期: 2020-07-24
修回日期: 2020-12-10
网络出版日期: 2021-01-29
基金资助
山西省高等学校科技创新计划项目(2019L1006);国家自然科学基金项目(51703151)
Preparation and Electrochemical Evaluation of MoS2/Graphene Quantum Dots as a Catalyst for Hydrogen Evolution in Microbial Electrolysis Cell
Received date: 2020-07-24
Revised date: 2020-12-10
Online published: 2021-01-29
通过水热法合成了一系列MoS2/GQDs复合材料,并制成碳基复合电极。利用电化学测试手段挑选出最佳电极后用于微生物电解池(MEC)阴极的产氢性能研究。实验结果显示: Na2MoO4、半胱氨酸和GQDs的最佳原料配比为375:600:1,制备出的MoS2/GQDs呈现明显的爆米花样纳米片结构,片层厚度在10 nm左右,当碳纸负载量为1.5 mg·cm-2时,MoS2/GQDs碳纸电极的析氢催化能力最佳。在MEC产氢实验中,MoS2/GQDs阴极MEC的产气量、氢气产率、库仑效率、整体氢气回收率、阴极氢气回收率、电能回收率和整体能量回收率分别为51.15±3.15 mL·cycle-1、0.401±0.032 m3H2·m3d-1、91.16±0.054%、66.64±5.39%、72.44±2.60%、217.26±7.42%和77.37±1.50%,均略高于Pt/C阴极MEC或与之媲美。另外,MoS2/GQDs具有良好的长期稳定性,且价格便宜,有利于实际应用。
代红艳 , 杨慧敏 , 刘宪 , 宋秀丽 , 梁镇海 . MoS2/GQDs催化剂的制备及微生物电解池的产氢性能研究[J]. 电化学, 2021 , 27(4) : 429 -438 . DOI: 10.13208/j.electrochem.200725
Microbial electrolysis cell (MEC) is a relatively new bioelectrochemical technology that produces H2 and meanwhile treats organic wastewater. Cathode hydrogen evolution catalyst plays a key role in MEC. The doping of Graphene Quantum Dots (GQDs) into MoS2 nanosheets can improve the catalytic activity of MoS2 by creating abundant defect sites both in the edge plane and the basal plane, as well as enhancing the electrical conductivity. In this paper, using Na2MoO4 , cysteine and GQDs as raw materials, a series of MoS2/GQDs composites were firstly synthesized via hydrothermal method, and then loaded on the carbon-based electrode. The optimal electrode was selected by electrochemical testing methods and used as a cathode of MEC to research the hydrogen production capacity. SEM image showed that the MoS2/GQDs composite exhibited a popcorn-like nanosheet structure and the thickness of each nanosheet was about 10 nm. The specific surface area of MoS2/GQDS composite reached 67.155 m2·g-1, which was 16 times of the specific surface area of MoS2 (4.197 m2·g-1). TEM image showed that some lattice fringes representing GQDs were intermixed with lattice fringes representing MoS2, which indicated that GQDs were well embedded in MoS2 . EDS results showed that the MoS2/GQDS composite contained Mo, S, C and O, and the atomic ratio of Mo: S: C: O = 1:2.5:1.9:1.2, indicating that the majority of Mo and S in the composite existed in the form of MoS2, while a part of S existed in the form of SOx. The LSV data of MoS2/GQDs carbon paper electrode showed that the synthesized MoS2/GQDs composite (2#) had the best catalytic activity toward hydrogen evolution when the raw material ratio of Na2MoO4, cysteine and GQDs was 375:600:1 with the optimum load of 1.5 mg·cm-2. The Tafel slope of MoS2/GQDs electrode (2#, 1.5 mg·cm-2) was found to be 44.3 mV·dec-1, lower than that of pure MoS2 electrode, which indicated that the doping of GQDs into MoS2 nanosheets made the electron transport more efficiently and the interfacial resistance was significantly reduced. In the MEC tests, the maximum hydrogen current density of MoS2/GQDS cathode (2#, 1.5 mg·cm-2) MEC reached 14.70 ± 0.80 A·m-2, which was comparable to that of Pt/C cathode MEC (14.58 ± 0.92 A·m-2), indicating that MoS2/GQDS had a good catalytic activity for hydrogen evolution. The gas production, hydrogen production rate, coulombic efficiency, hydrogen recovery efficiency, cathodic hydrogen recovery efficiency, electrical and overall energy recovery efficiencies of MoS2/GQDs cathode (2#, 1.5 mg·cm-2) MEC were, respectively, 51.15±3.15 mL·cycle-1, 0.40±0.032 m3H2·m-3d-1, 91.16±0.054%, 66.64±5.39%, 72.44±2.60%, 217.26±7.42% and 77.37±1.50%, which were slightly higher than or comparable to those of Pt/C cathode MEC. In addition, MoS2/GQDs enjoyed good stability and price advantage, which might promote the practical application of MECs.
[1] | Chu S, Majumdar A. Opportunities and challenges for a sustainable energy future[J]. Nature, 2012, 488(7411): 294-303. |
[2] | Turner J A. Sustainable hydrogen production[J]. Science, 2004, 305(5686): 972-974. |
[3] | Liu H, Grot S, Logan B E. Electrochemically assisted microbial production of hydrogen from acetate[J]. Environ. Sci. Technol., 2005, 39(11): 4317-4320. |
[4] | Kundu A, Sahu J N, Redzwan G, Hashim M A. An overview of cathode material and catalysts suitable for generating hydrogen in microbial electrolysis cell[J]. Int. J. Hydrog. Energy, 2013, 38(4): 1745-1757. |
[5] | De Silva Muňoz L, Bergel A, Féron D, Basseguy R. Hydrogen production by electrolysis of a phosphate solution on a stainless steel cathode[J]. Int. J. Hydrog. Energy, 2010, 35(16): 8561-8568. |
[6] | He B H, Chen L, Jing M J, Zhou M J, Hou Z H, Chen X B. 3D MoS2-rGO@Mo nanohybrids for enhanced hydrogen evolution: The importance of the synergy on the Volmer reaction[J]. Electrochim. Acta, 2018, 283: 357-365. |
[7] | Wu Z Z, Fei H, Wang D Z. MoS2/Cu2O nanohybrid as a highly efficient catalyst for the photoelectrocatalytic hydrogen generation[J]. Mater. Lett., 2019, 256: 126622. |
[8] | Xiang Z C, Zhang Z, Xu X J, Zhang Q, Yuan C W. MoS2 nanosheets array on carbon cloth as a 3D electrode for highly efficient electrochemical hydrogen evolution[J]. Carbon, 2016, 98: 84-89. |
[9] | Li G Q, Zhang D, Qiao Q, Li G Q, Zhang D, Qiao Q, Yu Y F, Peterson D, Zafar A, Kumar R, Curtarolo S, Hunte F, Shannon S, Zhu Y M, Yang W T, Cao L Y. All the catalytic active sites of MoS2 for hydrogen evolution[J]. J. Am. Chem. Soc., 2016, 138(51): 16632-16638. |
[10] | Guo J X, Zhu H F, Sun Y F, Tang L, Zhang X. Doping MoS2 with graphene quantum dots: structural and electrical engineering towards enhanced electrochemical hydrogen evolution[J]. Electrochim. Acta, 2016, 211: 603-610. |
[11] | Laursen A B, Kegnaes S, Dahl S, Chorkendorff I. Molybdenum sulfides efficient and viable materials for electro- and photoelectrocatalytic hydrogen evolution[J]. Energy Environ. Sci., 2012, 5(2): 5577-5591. |
[12] | Kong D S, Wang H T, Cha J J, Pasta M, Koski K J, Yao J, Cui Y. Synjournal of MoS2 and MoSe2 films with vertically aligned layers[J]. Nano Lett., 2013, 13(3): 1341-1347. |
[13] | Dai H Y(代红艳), Yang H M(杨慧敏), Liu X(刘宪), Jian X(简选), Guo M M(郭敏敏), Cao L L(曹乐乐), Liang Z H(梁镇海). Preparation and electrochemical evaluation of MoS2/graphene as a catalyst for hydrogen evolution in microbial electrolysis cell[J]. Chem. J. Chinese U.(高等学校化学学报), 2018, 39(2): 351-358. |
[14] | Li F, Li J, Lin X Q, Li X Z, Fang Y Y, Jiao L X, An X C, Fu Y, Jin J, Li R. Designed synjournal of multi-walled carbon nanotubes@Cu@MoS2 hybrid as advanced electrocatalyst for highly efficient hydrogen evolution reaction[J]. J. Power Sources, 2015, 300: 301-308. |
[15] | Hu W H, Han G Q, Liu Y R, Dong B, Chai Y M, Liu Y Q, Liu C G. Ultrathin MoS2-coated carbon nanospheres as highly efficient electrocatalyts for hydrogen evolution reaction[J]. Int. J. Hydrog. Energy, 2015, 40(20): 6552-6558. |
[16] | Ge P Y, Scanlon M D, Peljo P, Bian X J, Vubrel H, O'Neill A, Coleman J N, Cantoni M, Hu X L, Kontturi K, Liu B H, Girault H H. Hydrogen evolution across nano-schottky Junctions at carbon supported MoS2 catalysts in biphasic liquid systems[J]. Chem. Comm, 2012, 48(52): 6484-6486. |
[17] | Wang P C, Wan L, Lin Y Q, Wang B G. MoS2 supported CoS2 on carbon cloth as a high performance electrode for hydrogen evolution reaction[J]. Int. J. Hydrog. Energy, 2019, 44(31): 16566-16574. |
[18] | Guo Y X, Zhang X Y, Zhang X P, You T Y. Defect- and S-rich ultrathin MoS2 nanosheet embedded N-doped carbon nanofibers for efficient hydrogen evolution[J]. J. Mater. Chem. A, 2015, 3(31): 15927-15934. |
[19] | Karunadasa H I, Montalvo E, Sun Y J, Majda M, Long J R, Chang C J. A molecular MoS2 edge site mimic for catalytic hydrogen generation[J]. Science, 2012, 335(6069): 698-702. |
[20] | Wu L Q, Xu X B, Zhao Y Q, Zhang K Y, Sun Y, Wang T T, Wang Y Q, Zhong W, Du Y W. Mn doped MoS2/reduced graphene oxide hybrid for enhanced hydrogen evolution[J]. Appl. Surf. Sci., 2017, 425: 470-477. |
[21] | Yan Y, Xia B Y, Ge X M, Liu Z L, Wang J Y, Wang X. Ultrathin MoS2 nanoplates with rich active sites as highly efficient catalyst for hydrogen evolution[J]. ACS Appl. Mater. Interfaces, 2013, 5(24): 12794-12798. |
[22] | Xie J F, Zhang H, Li S, Wang R X, Sun X, Zhou M, Zhou J F, Lou X W, Xie Y. Defect-rich MoS2 ultrathin nanosheets with additional active edge sites for enhanced electrocatalytic hydrogen evolution[J]. Adv. Mater., 2013, 25(40): 5807-5813. |
[23] | Antonios K. Graphene quantum dots: In the crossroad of graphene, quantum dots and carbogenic nanoparticles[J]. Curr. Opin. Colloid Interface Sci., 2015, 20(5-6): 354-361. |
[24] | Dai H Y(代红艳), Yang H M(杨慧敏), Liu X(刘宪), Song X L(宋秀丽), Liang Z H(梁镇海). Hydrogen production of microbial electrolysis cell using scrap metal net as cathode and the analysis of microbial community structure in anode[J]. J. Electrochem.(电化学), 2019, 25(6): 773-780. |
[25] | Li Z W, Ye R Q, Feng R, Kang Y M, Zhu X, Tour J M, Fang Z Y. Graphene quantum dots doping of MoS2 monolayers[J]. Adv. Mater., 2015, 27(35): 5235-5240. |
[26] | Zhao X, Zhu H, Yang X R. Amorphous carbon supported MoS2 nanosheets as effective catalysts for electrocatalytic hydrogen evolution[J]. Nanoscale, 2014, 6(18): 10680-10685. |
[27] | Chao D L, Zhu C R, Xia X H, Liu J L, Zhang X, Wang J, Liang P, Lin J Y, Zhang H, Shen Z X, Fan H J. Graphene quantum dots coated VO2 arrays for highly durable electrodes for Li and Na ion batteries[J]. Nano Lett., 2015, 15(1): 565-573. |
[28] | Wang C X, Jin J L, Sun Y Y, Yao J R, Zhao G Z, Liu Y Q. In-situ synjournal and ultrasound enhanced adsorption properties of MoS2/graphene quantum dot nanocomposite[J]. Chem. Eng. J., 2017, 327: 774-782. |
[29] | Miao J W, Xiao F X, Yang H B, Khoo S Y, Chen J Z, Fan Z X, Hsu Y Y, Chen H M, Zhang H, Liu B. Hierarchical Ni-Mo-S nanosheets on carbon fiber cloth: A flexible electrode for efficient hydrogen generation in neutral electrolyte[J]. Sci. Adv., 2015, 1(7): e1500259. |
[30] | Guo J X, Li F F, Sun Y F, Zhang X, Tang L. Oxygen-incorporated MoS2 ultrathin nanosheets grown on graphene for efficient electrochemical hydrogen evolution[J]. J. Power Sources, 2015, 291: 195-200. |
[31] | Xie J F, Zhang J J, Li S, Grote F, Zhang X D, Zhang H, Wang R X, Lei Y, Pan B C, Xie Y. Controllable disorder engineering in oxygen-incorporated MoS2 ultrathin nano-sheets for efficient hydrogen evolution[J]. J. Am. Chem. Soc., 2013, 135(47): 17881-17888. |
[32] | Zhao S Y, Li C X, Wang L P, Liu N Y, Qiao S, Liu B B, Huang H, Liu Y, Kang Z H. Carbon quantum dots modified MoS2 with visible-light-induced high hydrogen evolution catalytic ability[J]. Carbon, 2016, 99: 599-606. |
[33] | Lu Y Z, Jiang Y Y, Wei W T, Wu H B, Liu M M, Niu L, Chen W. Novel blue light emitting graphene oxide nanosheets fabricated by surface functionalization[J]. J. Mater. Chem., 2012, 22(7): 2929-2934. |
[34] | Liu M M, Chen W. Green synjournal of silver nanoclusters supported on carbon nanodots: enhanced photoluminescence and high catalytic activity for oxygen reduction reaction[J]. Nanoscale, 2013, 5(24): 12558-12564. |
[35] | Hu W H, Shang X, Han G Q, Dong B, Liu Y R, Li X, Chai Y M, Liu Y Q, Liu C G. MoSx supported graphene oxides with different degree of oxidation as efficient electrocatalysts for hydrogen evolution[J]. Carbon, 2016, 100: 236-242. |
[36] | Yan Y, Ge X M, Liu Z L, Wang J Y, Lee J M, Wang X. Facile synjournal of low crystalline MoS2 nanosheet-coated CNTs for enhanced hydrogen evolution reaction[J]. Nanoscale, 2013, 5(17): 7768-7771. |
[37] | Zheng X L, Xu J B, Yan K Y, Wang H, Wang Z L. Space-confined growth of MoS2 nanosheets within graphite: the layered hybrid of MoS2 and graphene as an active catalyst for hydrogen evolution reaction[J]. Chem. Mater., 2014, 26(7): 2344-2353. |
[38] | Merki D, Hu X L. Recent developments of molybdenum and tungsten sulfides as hydrogen evolution catalysts[J]. Energy Environ. Sci., 2011, 4(10): 3878-3888. |
[39] | Li Y G, Wang H L, Xie L M, Liang Y Y, Hong G S, Dai H J. MoS2 nanoparticles grown on graphene: an advanced catalyst for the hydrogen evolution reaction[J]. J. Am. Chem. Soc., 2011, 133(19): 7296-7299. |
[40] | Kong D S, Wang H T, Lu Z Y, Cui Y. CoSe2 nanoparticles grown on carbon fiber paper: an efficient and stable electrocatalyst for hydrogen evolution reaction[J]. J. Am. Chem. Soc., 2014, 136(13): 4897-4900. |
[41] | Dai H Y, Yang H M, Liu X, Jian X, Liang Z H. Electrochemical evaluation of nano-Mg(OH)2/graphene as a catalyst for hydrogen evolution in microbial electrolysis cell[J]. Fuel, 2016, 174: 251-256. |
[42] | Tokash J C, Logan B E. Electrochemical evaluation of molybdenum disulfide as a catalyst for hydrogen evolution in microbial electrolysis cells[J]. Int. J. Hydrog. Energy, 2011, 36(16): 9439-9445. |
[43] | Su M, Wei L L, Qiu Z Z, Wang G, Shen J Q. Hydrogen production in single chamber microbial electrolysis cells with stainless steel fiber felt cathodes[J]. J. Power Sources, 2016, 301: 29-34. |
[44] | Wang A J, Liu W Z, Cheng S A, Xing D F, Zhou J H, Logan B E. Source of methane and methods to control its formation in single chamber microbial electrolysis cells[J]. Int. J. Hydrog. Energy, 2009, 34(9): 3653-3658. |
/
〈 |
|
〉 |