锂硫电池硫正极催化转换反应的研究进展
收稿日期: 2020-08-03
修回日期: 2020-09-08
网络出版日期: 2020-10-28
基金资助
中国科学院战略性先导科技专项(XDA17020404);国家重点项目研发计划(2016YFB0100100)
Research Progress of Sulfur Cathode Catalytic Conversions for Lithium-Sulfur Batteries
Received date: 2020-08-03
Revised date: 2020-09-08
Online published: 2020-10-28
单质硫作为电池的正极材料,其电化学过程历经多个步骤,完全放电生成最终产物是一个2电子反应. 低阶多硫化锂的生成需克服一定的能垒,且由Li2S2得到一个电子还原生成Li2S的反应是速控步骤. 硫正极的反应动力学是决定锂硫电池电化学性能,如比能量、比功率、低温性能等的关键因素. 提高速控步骤的反应动力学还能加速可溶性多硫化锂Li2S4向不溶性Li2S2和Li2S的转化,有利于减缓或消除多硫化锂的“穿梭效应”. 近年,已有大量的过渡金属氧化物、硫化物、碳化物、氮化物、磷化物,单原子催化剂和氧化还原电子中继体等被应用于催化硫正极反应,提高了电极的电化学性能和循环稳定性. 但是,目前详细的催化反应机制尚不完全清晰. 本文重点综述了这些化合物在硫正极反应中的作用机制,总结了近年来的研究进展,并对硫正极催化转换反应的研究和发展进行了展望.
邵钦君 , 陈剑 . 锂硫电池硫正极催化转换反应的研究进展[J]. 电化学, 2020 , 26(5) : 694 -715 . DOI: 10.13208/j.electrochem.200654
The electrochemical reduction of sulfur (S) takes place through multistep reactions when S is used as a cathode material. The complete discharge of S to form final product lithium sulfide (Li2S) is a two-electron reaction. The formation of low-order lithium polysulfides (LiPS) needs to overcome certain energy barriers. And the reduction of Li2S2 to Li2S is the rate-limited step. The reaction kinetic of sulfur cathode is the critical key to determine the electrochemical performance of Li-S batteries, such as specific energy, specific power and low temperature performance, etc. Accelerating the rate-limited step kinetics of sulfur cathodes can promote the conversion of soluble Li2S4 to insoluble Li2S2/Li2S, contributing to suppressed or eliminated “shuttle effect”. Recently, there are lots of transition metal oxides, sulfides, carbides, nitrides, phosphate, single atoms and redox electron mediators being applied in the preparations of sulfur cathodes, which improve the electrochemical performances and cycle stabilities. However, detailed mechanism of catalytic reaction is not completely clear. This review focuses on the functional and catalytic mechanisms of those metal compounds towards polysulfides, summarizes the recent research progress, and prospects the development and ongoing research of sulfur cathodes.
Key words: lithium-sulfur batteries; sulfur cathodes; catalytic conversions
[1] | Bruce P G, Freunberger S A, Hardwick L J, et al. Li-O2 and Li-S batteries with high energy storage[J]. Nature Materials, 2011,11(1):19-29. |
[2] | Xu R, Lu J, Amine K. Progress in mechanistic understanding and characterization techniques of Li-S batteries[J]. Advanced Energy Materials, 2015,5(16):1500408. |
[3] | Zheng D, Wang G W, Liu D, et al. The progress of Li-S batteries-understanding of the sulfur redox mechanism: dissolved polysulfide ions in the electrolytes[J]. Advanced Materials Technologies, 2018,3(9):1700233. |
[4] | Liang J, Sun Z H, Li F, et al. Carbon materials for Li-S batteries: Functional evolution and performance improvement[J]. Energy Storage Materials, 2016,2:76-106. |
[5] | Zheng D, Liu D, Harris J B, et al. Investigation of the Li-S battery mechanism by real-time monitoring of the changes of sulfur and polysulfide species during the discharge and charge[J]. ACS Applied Materials & Interfaces, 2017,9(5):4326-4332. |
[6] | Wang D R, Shah D B, Maslyn J A, et al. Rate constants of electrochemical reactions in a lithium-sulfur cell determined by operando X-ray absorption spectroscopy[J]. Journal of The Electrochemical Society, 2018,165(14):3487-3495. |
[7] | Ji X L, Lee K T, Nazar L F. A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries[J]. Nature Materials, 2009,8(6):500-506. |
[8] | Jayaprakash N, Shen J, Moganty S S, et al. Porous hollow carbon@sulfur composites for high-power lithium-sulfur batteries[J]. Angewandte Chemie-International Edition, 2011,50(26):5904-5908. |
[9] | Wang H L, Yang Y, Liang Y Y, et al. Graphene-wrapped sulfur particles as a rechargeable lithium-sulfur battery cathode material with high capacity and cycling stability[J]. Nano Letters, 2011,11(7):2644-2647. |
[10] | Schuster J, He G, Mandlmeier B, et al. Spherical ordered mesoporous carbon nanoparticles with high porosity for lithium-sulfur batteries[J]. Angewandte Chemie-International Edition, 2012,51(15):3591-3595. |
[11] | Wang D W, Zeng Q C, Zhou G M, et al. Carbon-sulfur composites for Li-S batteries: status and prospects[J]. Journal of Materials Chemistry A, 2013,1(33):9382-9394. |
[12] | Li L, Zhou G M, Yin L C, et al. Stabilizing sulfur cathodes using nitrogen-doped graphene as a chemical immobilizer for Li-S batteries[J]. Carbon, 2016,108:120-126. |
[13] | Liu J H, Li W F, Duan L M, et al. A graphene-like oxygenated carbon nitride material for improved cycle-life lithium/sulfur batteries[J]. Nano Letters, 2015,15(8):5137-5142. |
[14] | Wei Seh Z, Li W, Cha J J, et al. Sulphur-TiO2 yolk-shell nanoarchitecture with internal void space for long-cycle lithium-sulphur batteries[J]. Nature Communications, 2013,4:1331. |
[15] | Liang X, Garsuch A, Nazar L F. Sulfur cathodes based on conductive MXene nanosheets for high-performance lithium-sulfur batteries[J]. Angewandte Chemie-International Edition, 2015,54(13):3907-3911. |
[16] | Song J X, Gordin M L, Xu T, et al. Strong lithium polysulfide chemisorption on electroactive sites of nitrogen-doped carbon composites for high-performance lithium-sulfur battery cathodes[J]. Angewandte Chemie-International Edition, 2015,54(14):4325-4329. |
[17] | Cui Z M, Zu C X, Zhou W D, et al. Mesoporous titanium nitride-enabled highly stable lithium-sulfur batteries[J]. Advanced Materials, 2016,28(32):6926-6931. |
[18] | Park S K, Lee J K, Kang Y C. Yolk-shell structured assembly of bamboo-like nitrogen-doped carbon nanotubes embedded with Co nanocrystals and their application as cathode material for Li-S batteries[J]. Advanced Functional Materials, 28, 18:1705264. |
[19] | Peng H J, Zhang Q. Designing host materials for sulfur cathodes: from physical confinement to surface chemistry[J]. Angewandte Chemie-International Edition, 2015,54(38):11018-11020. |
[20] | Al Salem H, Babu G, Rao C V, et al. Electrocatalytic polysulfide traps for controlling redox shuttle process of Li-S batteries[J]. Journal of The American Chemical Society, 2015,137(36):11542-11545. |
[21] | Li Y J, Fan J M, Zheng M S, et al. A novel synergistic composite with multi-functional effects for high-performance Li-S batteries[J]. Energy & Environmental Science, 2016,9(6):1998-2004. |
[22] | Li Y J, Fang J M, Zhang J H, et al. A Honeycomb-like Co@N-C composite for ultrahigh sulfur loading Li-S Batteries[J]. ACS Nano, 2017,11(11):11417-11424. |
[23] | Yuan Z, Peng H J, Hou T Z, et al. Powering lithium-sulfur battery performance by propelling polysulfide redox at sulfiphilic hosts[J]. Nano Letters, 2016,16(1):519-527. |
[24] | Wang H Q, Zhang W C, Xu J Z, et al. Advances in polar materials for lithium-sulfur batteries[J]. Advanced Functional Materials, 2018,28(38):1707520. |
[25] | Zhang Z W, Peng H J, Zhao M, et al. Heterogeneous/homogeneous mediators for high-energy-density lithium-sulfur batteries: progress and prospects[J]. Advanced Functional Materials, 2018,28(38):1707536. |
[26] | Deng C, Wang Z W, Wang S P, et al. Inhibition of polysulfide diffusion in lithium-sulfur batteries: mechanism and improvement strategies[J]. Journal of Materials Che-mistry A, 2019,7(20):12381-12413. |
[27] | Pang Q, Kundu D, Cuisinier M, et al. Surface-enhanced redox chemistry of polysulphides on a metallic and polar host for lithium-sulphur batteries[J]. Nature Communications, 2014,5:4759. |
[28] | Tao X Y, Wang J G, Ying Z G, et al. Strong sulfur binding with conducting Magneli-phase TinO2n-1 nanomaterials for improving lithium-sulfur batteries[J]. Nano Letters, 2014,14(9):5288-5294. |
[29] | Li Z, Zhang J T, Lou X W. Hollow carbon nanofibers filled with MnO2 nanosheets as efficient sulfur hosts for lithium-sulfur batteries[J]. Angewandte Chemie-International Edition, 2015,54(44):12886-12890. |
[30] | Tao X Y, Wang J G, Liu C, et al. Balancing surface adsorption and diffusion of lithium-polysulfides on nonconductive oxides for lithium-sulfur battery design[J]. Nature Communications, 2016,7:11203. |
[31] | Liang X, Kwok C Y, Lodi-Marzano F, et al. Tuning transition metal oxide-sulfur interactions for long life lithium sulfur batteries: the “goldilocks” principle[J]. Advanced Energy Materials, 2016,6(6):1501636. |
[32] | Liang X, Nazar L F. In situ reactive assembly of scalable core-shell sulfur-mnO2 composite cathodes[J]. ACS Nano, 2016,10(4):4192-4198. |
[33] | Wang X L, Li G, Li J D, et al. Structural and chemical synergistic encapsulation of polysulfides enables ultralong-life lithium-sulfur batteries[J]. Energy & Environmental Science, 2016,9(8):2533-2538. |
[34] | Wang S Z, Liao J X, Yang X F, et al. Designing a highly efficient polysulfide conversion catalyst with paramontroseite for high-performance and long-life lithium-sulfur batteries[J]. Nano Energy, 2019,57:230-240. |
[35] | Liang X, Hart C, Pang Q, et al. A highly efficient polysulfide mediator for lithium-sulfur batteries[J]. Nature Communications, 2015,6:5682. |
[36] | Shao Q J, Guo D C, Wang C, et al. Yolk-shell structure MnO2@Hollow carbon nanospheres as sulfur host with synergistic encapsulation of polysulfides for improved Li-S batteries[J]. Journal of Alloys and Compounds, 2020,842:155790. |
[37] | Liu Y T, Han D D, Wang L, et al. NiCO2O4 nanofibers as carbon-free sulfur immobilizer to fabricate sulfur-based composite with high volumetric capacity for lithium-sulfur battery[J]. Advanced Energy Materials, 2019,9(11):1803477. |
[38] | Tao Y Q, Wei Y J, Liu Y, et al. Kinetically-enhanced polysulfide redox reactions by Nb2O5 nanocrystals for high-rate lithium-sulfur battery[J]. Energy & Environmen-tal Science, 2016,9(10):3230-3239. |
[39] | Zheng C, Niu S Z, Lv W, et al. Propelling polysulfides transformation for high-rate and long-life lithium-sulfur batteries[J]. Nano Energy, 2017,33:306-312. |
[40] | Ma F, Liang J S, Wang T Y, et al. Efficient entrapment and catalytic conversion of lithium polysulfides on hollow metal oxide submicro-spheres as lithium-sulfur battery cathodes[J]. Nanoscale, 2018,10(12):5634-5641. |
[41] | Wang C L, Li K, Zhang F F, et al. Insight of enhanced redox chemistry for porous MoO2 carbon-derived framework as polysulfide reservoir in lithium-sulfur batteries[J]. ACS Applied Materials & Interfaces, 2018,10(49):42286-42293. |
[42] | Liu H D, Chen Z L, Zhou L, et al. Rooting bismuth oxide nanosheets into porous carbon nanoboxes as a sulfur immobilizer for lithium-sulfur batteries[J]. Journal of Materials Chemistry A, 2019,7(12):7074-7081. |
[43] | Zhou G M, Tian H Z, Jina Y, et al. Catalytic oxidation of Li2S on the surface of metal sulfides for Li-S batteries[J]. Proceedings of the National Academy of Sciences of the United States of America, 2017,114(5):840-845. |
[44] | Shao Q J, Lu P F, Xu L, et al. Rational design of MoS2 nanosheets decorated on mesoporous hollow carbon spheres as a dual-functional accelerator in sulfur cathode for advanced pouch-type Li-S batteries[J]. Journal of Energy Chemistry, 2020,51:262-271. |
[45] | Lei T Y, Chen W, Huang J W, et al. Multi-functional layered WS2 nanosheets for enhancing the performance of lithium-sulfur batteries[J]. Advanced Energy Materials, 2017,7(4):1601843. |
[46] | Thangavel N K, Gopalakrishnan D, Arava L M R. Understanding heterogeneous electrocatalysis of lithium polysulfide redox on Pt and WS2 surfaces[J]. The Journal of Physical Chemistry C, 2017,121(23):12718-12725. |
[47] | Li M, Zhou J B, Zhou J, et al. Ultrathin SnS2 nanosheets as robust polysulfides immobilizers for high performance lithium-sulfur batteries[J]. Materials Research Bulletin, 2017,96:509-515. |
[48] | Xiao Z B, Yang Z, Zhang L J, et al. Sandwich-type NbS2@S@I-doped graphene for high-sulfur-loaded, ultrahigh-rate, and long-life lithium-sulfur batteries[J]. ACS Nano, 2017,11(8):8488-8498. |
[49] | Zhang Q, Wang Y, Seh Z W, et al. Understanding the anchoring effect of two-dimensional layered materials for lithium-sulfur batteries[J]. Nano Letters, 2015,15(6):3780-3786. |
[50] | Wang H T, Zhang Q F, Yao H B, et al. High electrochemical selectivity of edge versus terrace sites in two-dimensional layered MoS2 materials[J]. Nano Letters, 2014,14(12):7138-7144. |
[51] | Babu G, Masurkar N, Al Salem H, et al. Transition metal dichalcogenide atomic layers for lithium polysulfides electrocatalysis[J]. Journal of The American Chemical Society, 2017,139(1):171-178. |
[52] | Lin H B, Yang L Q, Jiang X, et al. Electrocatalysis of polysulfide conversion by sulfur-deficient MoS2 nanoflakes for lithium-sulfur batteries[J]. Energy & Environmental Science, 2017,10(6):1476-1486. |
[53] | Lin H B, Zhang S L, Zhang T R, et al. Simultaneous cobalt and phosphorous doping of MoS2 for improved catalytic performance on polysulfide conversion in lithium-sulfur batteries[J]. Advanced Energy Materials, 2019,9(38):1902096. |
[54] | Ren J, Zhou Y B, Xia L, et al. Rational design of a multidimensional N-doped porous carbon/MoS2/CNT nano-architecture hybrid for high performance lithium-sulfur batteries[J]. Journal of Materials Chemistry A, 2018,6(28):13835-13847. |
[55] | Wei Y J, Kong Z K, Pan Y K, et al. Sulfur film sandwiched between few-layered MoS2 electrocatalysts and conductive reduced graphene oxide as a robust cathode for advanced lithium-sulfur batteries[J]. Journal of Materials Chemistry A, 2018,6(14):5899-5909. |
[56] | Wu J Y, Li X W, Zeng H X, et al. Fast electrochemical kinetics and strong polysulfide adsorption by a highly oriented MoS2 nanosheet@N-doped carbon interlayer for lithium-sulfur batteries[J]. Journal of Materials Chemistry A, 2019,7(13):7897-7906. |
[57] | Chen X, Peng H J, Zhang R, et al. An analogous periodic law for strong anchoring of polysulfides on polar hosts in lithium sulfur batteries: S- or Li-binding on first-row transition-metal sulfides?[J]. ACS Energy Letters, 2017,2(4):795-801. |
[58] | Ai G, Hu Q Q, Zhang L, et al. Investigation of the nano-crystal CoS2 embedded in 3D honeycomb-like graphitic carbon with a synergistic effect for high-performance lithium sulfur batteries[J]. ACS applied materials & interfaces, 2019,11(37):33987-33999. |
[59] | Li W L, Qian J, Zhao T, et al. Boosting high-rate Li-S batteries by an MOF-derived catalytic electrode with a layer-by-layer structure[J]. Advanced Science, 2019,6(16):1802362. |
[60] | Ye C, Zhang L, Guo C X, et al. A 3D hybrid of chemically coupled nickel sulfide and hollow carbon spheres for high performance lithium-sulfur batteries[J]. Advanced Functional Materials, 2017,27(33):1702524. |
[61] | Cai D, Wang L L, Li L, et al. Self-assembled CdS quantum dots in carbon nanotubes: induced polysulfide trapping and redox kinetics enhancement for improved lithium-sulfur battery performance[J]. Journal of Materials Chemistry A, 2019,7(2):806-815. |
[62] | Xu J, Zhang W X, Fan H B, et al. Promoting lithium polysulfide/sulfide redox kinetics by the catalyzing of zinc sulfide for high performance lithium-sulfur battery[J]. Nano Energy, 2018,51:73-82. |
[63] | Boyjoo Y, Shi H D, Olsson E, et al. Molecular-level design of pyrrhotite electrocatalyst decorated hierarchical porous carbon spheres as nanoreactors for lithium-sulfur batteries[J]. Advanced Energy Materials, 2020,10(20):2000651. |
[64] | Liu Y P, Ma S Y, Liu L F, et al. Nitrogen doping improves the immobilization and catalytic effects of Co9S8 in Li-S batteries[J]. Advanced Functional Materials, 2020,30(32):2002462. |
[65] | Xiao Z B, Li Z L, Meng X P, et al. MXene-engineered lithium-sulfur batteries[J]. Journal of Materials Chemistry A, 2019,7(40):22730-22743. |
[66] | Liang X, Rangom Y, Kwok C Y, et al. Interwoven MXene nanosheet/carbon-nanotube composites as Li-S cathode hosts[J]. Advanced Materials, 2017,29(3):1603040. |
[67] | Xiao Z B, Li Z L, Li P Y, et al. Ultrafine Ti3C2 MXene nanodots-interspersed nanosheet for high-energy-density lithium-sulfur batteries[J]. ACS Nano, 2019,13(3):3608-3617. |
[68] | Song Y Z, Sun Z T, Fan Z D, et al. Rational design of porous nitrogen-doped Ti3C2 MXene as a multifunctional electrocatalyst for Li-S chemistry[J]. Nano Energy, 2020,70:104555. |
[69] | Dong Y F, Zheng S H, Qin J Q, et al. All-MXene-based integrated electrode constructed by Ti3C2 nanoribbon framework host and nanosheet interlayer for high-energy-density Li-S batteries[J]. ACS Nano, 2018,12(3):2381-2388. |
[70] | Peng H J, Zhang G, Chen X, et al. Enhanced electrochemical kinetics on conductive polar mediators for lithium-sulfur batteries[J]. Angewandte Chemie-International Edition, 2016,55(42):12990-12995. |
[71] | Zhou T H, Zhao Y, Zhou G M, et al. An in-plane heterostructure of graphene and titanium carbide for efficient polysulfide confinement[J]. Nano Energy, 2017,39:291-296. |
[72] | Shang C Q, Cao L J, Yang M Y, et al. Freestanding MO2C-decorating N-doped carbon nanofibers as 3D current collector for ultra-stable Li-S batteries[J]. Energy Storage Materials, 2018,18:375-381. |
[73] | Zhou F, Li Z, Luo X, et al. Low cost metal carbide nanocrystals as binding and electrocatalytic sites for high performance Li-S batteries[J]. Nano Letters, 2018,18(2):1035-1043. |
[74] | Pang Q, Nazar L F. Long-life and high-areal-capacity Li-S batteries enabled by a light-weight polar host with intrinsic polysulfide adsorption[J]. ACS Nano, 2016,10(4):4111-4118. |
[75] | Wang M, Liang Q H, Han J W, et al. Catalyzing polysulfide conversion by g-C3N4 in a graphene network for long-life lithium-sulfur batteries[J]. Nano Research, 2018,11(6):3480-3489. |
[76] | Sun Z H, Zhang J Q, Yin L C, et al. Conductive porous vanadium nitride/graphene composite as chemical anchor of polysulfides for lithium-sulfur batteries[J]. Nature Com-munications, 2017,8:14627. |
[77] | Zhong Y, Chao D L, Deng S J, et al. Confining sulfur in integrated composite scaffold with highly porous carbon fibers/vanadium nitride arrays for high-performance lithium-sulfur batteries[J]. Advanced Functional Materials, 2018,28(38):1706391. |
[78] | He J R, Manthiram A. Long-life, high-rate lithium-sulfur cells with a carbon-free VN host as an efficient polysulfide adsorbent and lithium dendrite inhibitor[J]. Advanced Energy Materials, 2019,10(3):1903241. |
[79] | Jeong T G, Choi D S, Song H, et al. Heterogeneous catalysis for lithium-sulfur batteries: enhanced rate performance by promoting polysulfide fragmentations[J]. ACS Energy Letters, 2017,2(2):327-333. |
[80] | Wang Y, Zhang R, Pang Y C, et al. Carbon@titanium nitride dual shell nanospheres as multi-functional hosts for lithium sulfur batteries[J]. Energy Storage Materials, 2019,16:228-235. |
[81] | Xiao K K, Wang J, Chen Z, et al. Improving Polysulfides Adsorption and Redox Kinetics by the CO4N nanoparticle/n-doped carbon composites for lithium-sulfur batteries[J]. Small, 2019,15(25):1901454. |
[82] | Li R R, Peng H J, Wu Q P, et al. Sandwich-like catalyst-carbon-catalyst trilayer structure as a compact 2D host for highly stable lithium-sulfur batteries[J]. Angewandte Chemie-International Edition, 2020,59(29):12129-12138. |
[83] | Zhao M, Peng H J, Zhang Z W, et al. Activating inert metallic compounds for high-rate lithium-sulfur batteries through in situ etching of extrinsic metal[J]. Angewandte Chemie-International Edition, 2019,58(12):3779-3783. |
[84] | Ren W J, Xu L Q, Zhu L, et al. Cobalt-doped vanadium nitride yolk-shell nanospheres@carbon with physical and chemical synergistic effects for advanced Li-S Batteries[J]. ACS Applied Materials & Interfaces, 2018,10(14):11642-11651. |
[85] | Shen Z H, Zhang Z L, Li M, et al. Rational design of a Ni3N0.85 electrocatalyst to accelerate polysulfide conversion in lithium-sulfur batteries[J]. ACS Nano, 2020,14(6):6673-6682. |
[86] | Zhou T H, Lv W, Li J, et al. Twinborn TiO2-TiN heterostructures enabling smooth trapping-diffusion-conversion of polysulfides towards ultralong life lithium-sulfur batteries[J]. Energy & Environmental Science, 2017,10(7):1694-1703. |
[87] | Ji L, Wang X, Jia Y F, et al. Flexible electrocatalytic nanofiber membrane reactor for lithium/sulfur conversion chemistry[J]. Advanced Functional Materials, 2020,30(28):1910533. |
[88] | Yao Y, Wang H Y, Yang H, et al. A dual-functional conductive framework embedded with TiN-VN heterostructures for highly efficient polysulfide and lithium regulation toward stable Li-S full batteries[J]. Advanced Materials, 2020,32(6):1905658. |
[89] | Ye J C, Chen J J, Yuan R M, et al. Strategies to explore and develop reversible redox reactions of Li-S in electrode architectures using silver-polyoxometalate clusters[J]. Journal of The American Chemical Society, 2018,140(8):3134-3138. |
[90] | Yuan H, Zhang N, Tian L, et al. Incorporation of layered tin(IV) phosphate in graphene framework for high performance lithium-sulfur batteries[J]. Journal of Energy Chemistry, 2021,53:99-108. |
[91] | Yuan H D, Chen X L, Zhou G M, et al. Efficient activation of Li2S by transition metal phosphides nanoparticles for highly stable lithium-sulfur batteries[J]. ACS Energy Letters, 2017,2(7):1711-1719. |
[92] | Zhou J B, Liu X J, Zhu L Q, et al. Deciphering the modulation essence of p bands in Co-based compounds on Li-S chemistry[J]. Joule, 2018,2(12):2681-2693. |
[93] | Shen J D, Xu X J, Liu J, et al. Mechanistic understanding of metal phosphide host for sulfur cathode in high-energy-density lithium-sulfur batteries[J]. ACS Nano, 2019,13(8):8986-8996. |
[94] | Shen Z H, Cao M Q, Zhang Z L, et al. Efficient Ni2CO4P3 nanowires catalysts enhance ultrahigh-loading lithium-sulfur conversion in a microreactor-like battery[J]. Advanced Functional Materials, 2019,30(3):1906661. |
[95] | Li B Q, Kong L, Zhao C X, et al. Expediting redox kinetics of sulfur species by atomic-scale electrocatalysts in lithium-sulfur batteries[J]. InfoMat, 2019,1(4):533-541. |
[96] | Du Z Z, Chen X J, Hu W, et al. Cobalt in nitrogen-doped graphene as single-atom catalyst for high-sulfur content lithium-sulfur batteries[J]. Journal of The American Chemical Society, 2019,141(9):3977-3985. |
[97] | Ye H L, Sun J G, Zhang S L, et al. Stepwise electrocatalysis as a strategy against polysulfide shuttling in Li-S batteries[J]. ACS Nano, 2019,13(12):14208-14216. |
[98] | Fan Y N, Ma F, Liang J S, et al. Accelerated polysulfide conversion on hierarchical porous vanadium-nitrogen-car-bon for advanced lithium-sulfur batteries[J]. Nanoscale, 2020,12(2):584-590. |
[99] | Wang C G, Song H W, Yu C C, et al. Iron single-atom catalyst anchored on nitrogen-rich MOF-derived carbon nanocage to accelerate polysulfide redox conversion for lithium sulfur batteries[J]. Journal of Materials Chemistry A, 2020,8(6):3421-3430. |
[100] | Zhang D, Wang S, Hu R M, et al. Catalytic conversion of polysulfides on single atom zinc implanted MXene toward high-rate lithium-sulfur batteries[J]. Advanced Functional Materials, 2020,30(30):2002471. |
[101] | Meini S, Elazari R, Rosenman A, et al. The use of redox mediators for enhancing utilization of Li2S cathodes for advanced Li-S battery systems[J]. Journal of Physical Chemistry Letters, 2014,5(5):915-918. |
[102] | Tsao Y, Lee M, Miller E C, et al. Designing a quinone-based redox mediator to facilitate Li2S oxidation in Li-S batteries[J]. Joule, 2019,3(3):872-884. |
[103] | Li G, Wang X L, Seo M H, et al. Chemisorption of polysulfides through redox reactions with organic molecules for lithium-sulfur batteries[J]. Nature Communications, 2018,9(1):705. |
[104] | Gerber L C, Frischmann P D, Fan F Y, et al. Three-dimensional growth of Li2S in lithium-sulfur batteries promoted by a redox mediator[J]. Nano Letters, 2016,16(1):549-454. |
[105] | Wu X, Liu N, Guan B, et al. Redox mediator: A new strategy in designing cathode for prompting redox process of Li-S batteries[J]. Advanced Science, 2019,6(21):1900958. |
/
〈 |
|
〉 |