欢迎访问《电化学(中英文)》期刊官方网站,今天是
综述

钛基氧化铱电极电沉积制备技术研究进展

  • 吴丹丹 ,
  • 吴旭
展开
  • 华中科技大学环境科学与工程学院,湖北 武汉 430074
* Tel: (86)18571590300, E-mail: Profxuwu@hust.edu.cn

收稿日期: 2020-08-14

  修回日期: 2020-08-27

  网络出版日期: 2020-09-17

Research Progress in Electrodeposition Technology of Titanium-Based Iridium Oxide Electrode

  • Dan-Dan Wu ,
  • Xu Wu
Expand
  • College of Environmental Science and Engineering, Huazhong University of Science and Technology ,Wuhan 430074, Hubei, China

Received date: 2020-08-14

  Revised date: 2020-08-27

  Online published: 2020-09-17

摘要

钛基氧化铱电极作为DSA(dimension stable anode)中的典型电极,广泛应用于各个领域。目前工业生产的钛基氧化铱电极主要由传统热分解法制备,存在成本高昂,工艺繁琐,依赖人工劳动,无法大规模生产等问题,十分有必要探索开发新的制备技术。本文从沉积液配方、基底材料的选择及处理、电沉积方式以及沉积时间等方面系统地讨论了氧化铱电沉积制备技术的研究进展,包括作者课题组所作的一些工作及成果;分析了钛基氧化铱电极电沉积制备技术目前所面临的挑战,并给出一定建议;阐述了其应用前景,展望了其未来发展方向,希望更多的科研人员能投入到相关研究中。

本文引用格式

吴丹丹 , 吴旭 . 钛基氧化铱电极电沉积制备技术研究进展[J]. 电化学, 2021 , 27(1) : 35 -44 . DOI: 10.13208/j.electrochem.200802

Abstract

Titanium-based iridium oxide electrode has been widely used in various fields, such as electrocatalytic oxidation, biomedical applications, hydrometallurgical metal recovery, electro-osmotic dewatering, etc. At present, it is mainly prepared by traditional thermal decomposition method, however, which has high cost, cumbersome process, mainly relying on manual labor and cannot be mass-produced yet. It is, therefore, urgently necessary to explore new preparation technologies by focusing on electrodeposition technology, with technological characteristics such as eco-friendly and sustainable development. This article systematically discusses the research progress in iridium oxide electrodeposition preparation technology from the aspects of deposition solution formulation, base material selection and treatment, electrodeposition method and deposition time, etc. Some works and achievements, made by the author's research group, such as a new electrodeposition recipe of titanium-based iridium oxide electrode and the pretreatment of titanium with anodic oxidation for improving the stability of electrodeposited IrO2 electrode are also presented. The current challenges faced by the electrodeposition preparation technology of titanium-based iridium oxide electrode, including bad coating quality, weak bonding ability between coating and substrate, lack of the study on the theory about dynamic of electrodeposition and the problem of industrial applications are analyzed. Based upon the aforementioned challenges, some suggestions, for example, utilizing optimization of the electrodeposition, multi-deposition process combination, metal (such as tantalum, lanthanum) co-deposition, are given to solve for the problem of coating quality. The process of electrodeposition by utilizing in-situ electrochemical methods, and combined with COMSOL and other software to simulate the process, and then starting from both electrochemical theory and crystal growth theory, as well as the gradually perfect the theoretical research on electrodeposition of iridium oxide on titanium are summarized. Finally, the application prospects and future development directions are highlighted. It is expected that this brief review would offer critical insights and useful guidelines for developing superior electrodeposition technology of titanium-based iridium oxide electrode.

参考文献

[1] Scialdone O, Randazzo S, Galia A, Filardo G. Electrochemical oxidation of organics at metal oxide electrodes: The incineration of oxalic acid at IrO2-Ta2O5 (DSA-O2) anode[J]. Electrochim. Acta, 2009,54(4):1210-1217.
[2] Huang C A, Yang S W, Chen C Z, Hsu F Y. Electrochemical behavior of IrO2-Ta2O5/Ti anodes prepared with different surface pretreatments of Ti substrate[J]. Surf. Coat. Technol., 2017,320:270-278.
[3] Krysa J, Kule L, Mráz R, Rousar I. Effect of coating thickness and surface treatment of titanium on the properties of IrO2-Ta2O5 anodes[J]. J. Appl. Electrochem., 1996,26(10):999-1005.
[4] Xiao J, Wu X, Yu W B, Liang S, Yu J W, Gu Y Y, Deng H L, Hu J K, Xiao K K, Yang J K. Migration and distribution of sodium ions and organic matters during electro-dewatering of waste activated sludge at different dosages of sodium sulfate[J]. Chemosphere, 2017: 189:67-75.
[5] Yu J G, Zhao X J, Zhao Q N. Photocatalytic activity of nanometer TiO2 thin films prepared by the sol-gel method[J]. Mater. Chem. Phys., 2001,69(1-3):25-29.
[6] Terabe K, Kato K, Miyazaki H, Yamaguchi S, Imai A, Iguchi Y. Microstructure and crystallization behaviour of TiO2 precursor prepared by the sol-gel method using metal alkoxide[J]. J. Mater. Sci., 1994,29(6):1617-1622.
[7] Thanawala S S, Baird R J, Georgiev D G, Auner G W. Amorphous and crystalline IrO2 thin films as potential stimulation electrode coatings[J]. Appl. Surf. Sci., 2008,254(16):5164-5169.
[8] Labou D, Slavcheva E, Schnakenberg U, Neophytides S. Performance of laboratory polymer electrolyte membrane hydrogen generator with sputtered iridium oxide anode[J]. J. Power Sources, 2008,185(2):1073-1078.
[9] Lee B S, Ahn S H, Park H Y, Choi I, Yoo S J, Kim H J, Henkensmeier D, Kim J Y, Park S, Nam S W, Lee K Y, Jang J H. Development of electrodeposited IrO2 electrodes as anodes in polymer electrolyte membrane water electrolysis[J]. Appl. Catal. B - Environ., 2015,179:285-291.
[10] Pratsalfonso E, Abad L, Casanpastor N, Gonzalo-Ruiz J, Baldrich E. Iridium oxide pH sensor for biomedical applications. Case urea-urease in real urine samples[J]. Biosens. Bioelectron., 2013,39(1):163-169.
[11] Jin H. Fabrication, characterisation, and optical applications of electrochemically deposited nanostructured IrOx films[D]. Southampton: University of Southampton, 2008.
[12] Zhang Y L, Cao M M, Lü H, Wei J C, Gu Y Y, Liu D G, Zhang W B, Ryan M P, Wu X. Electrodeposited nanometer-size IrO2/Ti electrodes with 0.3 mg IrO2 cm-2 for sludge dewatering electrolysers[J]. Electrochim. Acta, 2018,265:507-513.
[13] Wang J, Rivas G, Chicharro M. Glucose microsensors based on electrochemical deposition of iridium and glucose oxidase onto carbon fiber[J]. J. Electroanal. Chem., 1997,439:55-61.
[14] N Ther J, K Ster F, Freudenberger R, Schoberl C, Lampke T. Electrochemical deposition of iridium and iridium-nickel-alloys[M]. IOP Conference Series: Materials Science and Engineering, 2017,181:012041.
[15] Jian X H, Tsai D S, Chung W H, Huang Y S, Liu F J. Pt-Ru and Pt-Mo electrodeposited onto Ir-IrO2 nanorods and their catalytic activities in methanol and ethanoloxidation[J]. J. Mater. Chem., 2009,19(11):1601-1607.
[16] Yagi M, Tomita E, Kuwabara T. Remarkably high activity of electrodeposited IrO2 film for electrocatalytic water oxidation[J]. J. Electroanal. Chem., 2005,579(1):83-88.
[17] Yamanaka K. Anodically electrodeposited iridium oxide films (AEIROF) from alkaline solutions for electrochromic display devices[J]. Jpn. J. Appl. Phys., 1989,28(4):632-637.
[18] Baur J E, Spaine T W. Electrochemical deposition of iridium (IV) oxide from alkaline solutions of iridium(III) oxide[J]. J. Electroanal. Chem., 1998,443(2):208-216.
[19] Bezbaruah A N, Zhang T C. Fabrication of Anodically Electrodeposited Iridium Oxide Film pH Microelectrodes for Microenvironmental Studies[J]. Anal. Chem., 2002,74(22):5726-5733.
[20] Casella I G, Contursi M, Toniolo R. Anodic electrodeposition of iridium oxide particles on glassy carbon surfaces and their electrochemical/SEM/XPS characterization[J]. J. Electroanal. Chem., 2015,736:147-152.
[21] Petit M A, Plichon V. Anodic electrodeposition of iridium oxide films[J]. J. Electroanal. Chem., 1998,444(2):247-252.
[22] Zhang X(张新), Luo Y H(罗远辉), Li X Y(李兴彦). Effect of some factors in iridium plating on electroplated coating surface[J]. Met. Funct. Mater. (金属功能材料), 2012(4):46-49.
[23] Shi Y H, Meng H M. Electrochemical behavior of IrO2 electrodes in the anodic electrodeposition of MnO2[J]. Acta Phys.-Chim. Sin., 2011,27(2):461-467.
[24] Wang J P(王锦鹏), Zhong X M(钟学明), Teng L J(滕乐金), Zhao Y(赵洋). Discussion on removal of the micropotassium from the solution of dihydrogen hexachloroiridate(IV)[J]. G D Chem. (广东化工), 2008,35(7):23-26.
[25] Kakooei S, Ismail M C, Wahjoedi B A. Electrochemical study of iridium oxide coating on stainless steel substrate[J]. Int. J. Electrochem. Sci., 2013,8(3):3290-3301.
[26] Zhao C X, Yu H T, Li Y C, Li X H, Ding L, Fan L Z. Electrochemical controlled synjournal and characterization of well-aligned IrO2 nanotube arrays with enhanced electrocatalytic activity toward oxygen evolution reaction[J]. J. Electroanal. Chem., 2013,688:269-274.
[27] Sun Z H(孙志华), Liu Y H(刘佑厚), Zhang X Y(张晓云), Tang Z H(汤智慧), Liu M H(刘明辉). A review of electroplating technology on titanium and titanium alloys[J]. Corros. Sci. Prot. Technol. (腐蚀与防护), 2005,26(11):493-496.
[28] Yan Z W, Zhao Y W, Zhang Z Z, Li G, Li H C, Wang J S, Feng Z Q, Tang M Q, Yuan X J, Zhang R Z, Du Y Y. A study on the performance of IrO2-Ta2O5 coated anodes with surface treated Ti substrates[J]. Electrochim. Acta, 2015,157:345-350.
[29] Aravind P, Selvaraj H, Ferro S, Sundaram M. An integrated (electro and bio-oxidation) approach for remediation of industrial wastewater containing azo-dyes: Understanding the degradation mechanism and toxicity assessment[J]. J. Hazard. Mater., 2016,318(15):203-215.
[30] Huang C A, Yang S W, Lai P L. Effect of precursor baking on the electrochemical properties of IrO2-Ta2O5/Ti anodes[J]. Surf. Coat. Technol., 2018,350:896-903.
[31] Nishanthi S T, Iyyapushpam S, Padiyan D P. Role of water content in anodization of titanium to fabricate TiO2 nanotubes and its properties[C]// IEEE, International Conference on Advanced Nanomaterials and Emerging Engineering Technologies (ICANMEET), Chennai, INDIA, Jul 24-27, 2013: 320-323.
[32] Alves S A, Patel S B, Sukotjo C, Mathew M T, Filho P N, Celis J P, Rocha L A, Shokuhfar T. Synjournal of calcium-phosphorous doped TiO2 nanotubes by anodization and reverse polarization: A promising strategy for an efficient biofunctional implant surface[J]. Appl. Surf. Sci., 2017,399:682-701.
[33] Wu D D, Wu X, Zhang Y L. A study on Ti anodic pretreatment for improving the stability of electrodeposited IrO2 electrode[J]. Electrochim. Acta, 2020,338:135793.
[34] Zhang X(张新), Luo Y H(罗远辉), Li X Y(李兴彦). Research progress of iridium electroplating technology[J]. Met. Funct. Mater. (金属功能材料), 2012,2:58-61.
[35] Steegstra P, Ahlberg E. Involvement of nanoparticles in the electrodeposition of hydrous iridium oxide films[J]. Electrochim. Acta, 2012,68:206-213.
[36] Meyer R D, Nguyen T H, Twardoch U M, Rauh R D. Electrodeposition of iridium oxide charge injection electrodes[C]// Proceedings of the First Joint BMES/EMBS Conference, October 13-16, 1999, Atlanta, GA, USA. IEEE, c1999:0-1
[37] Yamanaka K. The electrochemical behavior of anodically electrodeposited iridium oxide films and the reliability of transmittance variable cells[J]. Jpn. J. Appl. Phys., 1991,30(6):1285-1289.
[38] Yousefpour M, Shokuhy A. Electrodeposition of TiO2-RuO2-IrO2 coating on titanium substrate[J]. Superlattices Microstruct., 2012,51(6):842-853.
[39] Wang W D(王维大), Feng Y L(冯雅丽), Li H R(李浩然), Cai Z L(蔡震雷). Electrodeposition of manganese dioxide on Ti-IrO2 anode in acidic nitrate medium[J]. J. Northeast. Univ. (东北大学学报), 2014,35(2):249-252.
[40] Lattach Y, Rivera J F, Bamine T, Deronzier A, Moutet J C. Iridium oxide-polymer nanocomposite electrode materials for water oxidation[J]. ACS Appl. Mater. Interfaces, 2014,6(15):12852-12859.
[41] Salimi A, Alizadeh V, Compton R G. Disposable amperometric sensor for neurotransmitters based on screen-printed electrodes modified with a thin iridium oxide film[J]. Anal. Sci., 2005,21(11):1275-1280.
[42] Guo W J(郭文君), Li Z Q(李紫琼), Ke R H(柯若昊), Niu D F(钮东方), Xu H(徐衡), Zhang X S(张新胜). A study of pluse electrodeposition on suppressing the formation of lithium dendrite[J]. J. Electrochem. (电化学), 2018,24(3):246-252.
[43] Herrada R A, Acosta-Santoyo G, Sepúlveda-Guzmán S, Brillas E, Sires I, Bustos E. IrO2 Ta2O5 |Ti electrodes prepared by electrodeposition from different Ir:Ta ratios for the degradation of polycyclic aromatic hydrocarbons[J]. Electrochim. Acta, 2018,263:353-361.
[44] Jiang B(蒋孛), Zhang L N(张莉娜), Qin X X(秦先贤), Cai W B(蔡文斌). Electrodeposition of RuO2 layers on TiO2 nanotube array toward CO2 electroreduction[J]. J. Electrochem. (电化学), 2017,23(2):238-244.
[45] Van Pham C, Buhler M, Knoppel J, Bierling M, Seeberger D, Escalera-Lopez D, Mayrhofer K J J, Cherevko S, Thiele S. IrO2 coated TiO2 core-shell microparticles advance performance of low loading proton exchange membrane water electrolyzers[J]. Appl. Catal. B - Environ., 2020,269:118762.
文章导航

/