欢迎访问《电化学(中英文)》期刊官方网站,今天是
研究论文

纳米硅在含添加剂的高浓度电解液中循环特征及其表面协同成膜的研究

  • 常增花 ,
  • 韩富娟 ,
  • 杨夕馨 ,
  • 王建涛 ,
  • 卢世刚
展开
  • 1.有研科技集团有限公司_国家动力电池创新中心,北京 100088
    2.国联汽车动力电池研究院有限责任公司,北京 100088
    3.北京有色金属研究总院,北京 100088

收稿日期: 2020-06-30

  修回日期: 2020-07-21

  网络出版日期: 2020-08-19

基金资助

国家重点研发计划项目(2016YFB0301305);国家重点研发计划项目(2018YFB0104400);国家自然科学基金项目(U1764255);国家自然科学基金项目(21903067)

Cycling Performance and Solid-Electrolyte-Interphase Synergic Formation of Silicon Nanoparticles in the Concentrated Electrolyte with Additives

  • Zeng-hua CHANG ,
  • Fu-juan HAN ,
  • Xi-xin YANG ,
  • Jian-tao WANG ,
  • Shi-gang LU
Expand
  • 1. National Power Battery Innovation Center , GRINM Group Corporation Limited, Beijing 100088, China
    2. China Automotive Battery Research Institute Co., Ltd., Beijing 100088, China
    3. General Research Institute for Nonferrous Metals, Beijing 100088, China

Received date: 2020-06-30

  Revised date: 2020-07-21

  Online published: 2020-08-19

摘要

本文研究了在LiFSI-(PC)3高浓度电解液中添加剂对于纳米硅材料的循环性能的影响,采用扫描电子显微镜、傅里叶变换红外光谱和X-射线光电子能谱分析了循环过程纳米硅材料及其电极的结构和表面SEI膜演化的特征. 结果表明,添加剂能够改善纳米硅材料的循环性能,在LiFSI-(PC)3高浓度电解液中循环300周材料比容量为574.8 mAh·g-1,而含有3%LiDFOB、3%FEC、3%TMSB的添加剂的高浓度电解液中,比容量分别为1142.9、1863.6和1852.2 mAh·g-1. 作者分析认为,在LiFSI-(PC)3浓溶液中LiFSI优先于PC在纳米硅表面发生成膜反应,形成的SEI膜由以无机物主导的内层膜和以有机物主导的外层膜组成,而在含添加剂的高浓度电解液中,添加剂和LiFSI协同参与SEI成膜反应,形成的内层膜能够减缓PC溶剂参与外层的成膜反应,由此形成的SEI膜能够抑制循环过程中SEI膜的过度生长,更好地抑制了纳米硅的粉化,纳米硅材料及其电极结构稳定性更好,材料表现出更好的循环性能.

本文引用格式

常增花 , 韩富娟 , 杨夕馨 , 王建涛 , 卢世刚 . 纳米硅在含添加剂的高浓度电解液中循环特征及其表面协同成膜的研究[J]. 电化学, 2020 , 26(5) : 759 -771 . DOI: 10.13208/j.electrochem.200645

Abstract

In this paper, the effects of additives on the cycling performance of silicon nanoparticles in LiFSI-(PC)3 based concentrated electrolytes were systematically studied. The structures of silicon nanoparticle electrodes and the evolution of solid-electrolyte-interphase were characterized by scanning electron microscopy (SEM), attenuated total reflection Flourier transformed infrared spectroscopy (ATR-FTIR) and X-ray photoelectron spectroscopy (XPS). The results indicated that the additives can efficiently improve the cycling performance of silicon nanoparticle electrodes. In LiFSI-(PC)3 concentrated electrolyte, the capacity became 574.8 mAh·g-1 after 300 cycles with the initial capacity of 3296.1 mAh·g-1. In contrast, the 3% LiDFOB, 3% FEC and 3% TMSB-containing systems reached 1142.9, 1863.6 and 1852.2 mAh·g-1 after 300 cycles, respectively. The comprehensive analysis indicates that the reduction of LiFSI takes priority over PC on the surface of silicon nanoparticles in LiFSI-(PC)3 concentrated electrolyte, and the SEI film is composed of an inner layer dominated by inorganic products and an outer layer dominated by organic products. While in the concentrated electrolyte containing additives, the additives and LiFSI participate in the formation of SEI inner layer synergistically, and the SEI inner layer can suppress the reduction of PC which contribute to the formation of SEI outer layer. The SEI film formed on this mechanism could suppress the excessive growth of the SEI film, mitigate the pulverization of silicon nanoparticles, and enhance the structure stability of the silicon nanoparticle electrode, thus, the silicon nanoparticle electrodes exhibited better cycling performance.

参考文献

[1] Horowitz Y, Han H L, Soto F A, et al. Fluoroethylene carbonate as a directing agent in amorphous silicon anodes: electrolyte interface structure probed by sum frequency vibrational spectroscopy and ab initio molecular dynamics[J]. Nano Letters, 2018,18(2):1145-1151.
[2] Veith G M, Doucet M, Sacci R L, et al. Determination of the solid electrolyte interphase structure grown on a silicon electrode using a fluoroethylene carbonate additive[J]. Scientific Reports, 2017,7(1):1-15.
[3] Schiele A, Breitung B, Hatsukade T, et al. The critical role of fluoroethylene carbonate in the gassing of silicon anodes for lithium-ion batteries[J]. ACS Energy Letters, 2017,2(10):2228-2233.
[4] Choi N S, Yew K H, Kim H, et al. Surface layer formed on silicon thin-film electrode in lithium bis(oxalato) borate-based electrolyte[J]. Journal of Power Sources, 2007,172(1):404-409.
[5] Song H Y, Jeong S K. Surface film formation on graphite in propylene carbonate solution containing lithium bis (oxalate) borate[J]. Journal of Nanoscience & Nanotechnology, 2016,16(10):10583-10587.
[6] Lee S J, Han J G, Lee Y, et al. A bi-functional lithium difluoro(oxalato) borate additive for lithium cobalt oxide/lithium nickel manganese cobalt oxide cathodes and silicon/graphite anodes in lithium-ion batteries at elevated temperatures[J]. Electrochimica Acta, 2014,137:1-8.
[7] Dalavi S, Guduru P, Lucht B L. Performance enhancing electrolyte additives for lithium ion batteries with silicon anodes[J]. Journal of The Electrochemical Society, 2012,159(5):A642-A646.
[8] 上田敦史, 岩本和也, 芳泽浩司. 非水电解质电池和非水电解液: 中国专利, CN1316791A[P/OL]. 2001-10-10.
[9] Chang Z H, Wang J T, Wu Z H, et al. The electrochemical performance of silicon nanoparticles in concentrated electrolyte[J]. ChemSusChem, 2018,11(11):1787-1796.
[10] Chang Z H, Li X, Yun F L, et al. Effect of dual-salt concentrated electrolytes on the electrochemical performance of silicon nanoparticles[J]. ChemElectroChem, 2020,7(5):1135-1141.
[11] Chen L B, Wang K, Xie X H, et al. Enhancing electrochemical performance of silicon film anode by vinylene carbonate electrolyte additive[J]. Electrochemical and Solid State Letters, 2006,9(11):A512-A515.
[12] Aurbach D, Weissman I, Zaban A, et al. Correlation between surface chemistry, morphology, cycling efficiency and interfacial properties of Li electrodes in solutions containing different Li salts[J]. Electrochimica Acta, 1994,39(1):51-71.
[13] Yoon T, Milien M S, Parimalam B S, et al. Thermal decomposition of the solid electrolyte interphase (SEI) on silicon electrodes for lithium ion batteries[J]. Chemistry of Materials, 2017,29(7):3237-3245.
[14] Zhuang G V, Ross P N. Analysis of the chemical composition of the passive film on Li-ion battery anodes using attentuated total reflection infrared spectroscopy[J]. Electrochemical and Solid-State Letters, 2003,6(7):A136-A139.
[15] Huang J, Hollenkamp A F. Thermal behavior of ionic liquids containing the FSI anion and the Li+ cation[J]. Journal of Physical Chemistry C, 2010,114(49):21840-21847.
[16] Budi A, Basile A, Opletal G, et al. Study of the initial stage of solid electrolyte interphase formation upon chemical reaction of lithium metal and n-methyl-n-propyl-pyrrolidinium-bis(fluorosulfonyl) imide[J]. Journal of Phy-sical Chemistry C, 2012,116(37):19789-19797.
[17] Diao Y, Xie K, Xiong S Z, et al. Insights into Li-S battery cathode capacity fading mechanisms: irreversible oxidation of active mass during cycling[J]. Journal of The Ele-ctrochemical Society, 2012,159(11):A1816-A1821.
[18] Nguyen C C, Woo S W, Song S W. Understanding the interfacial processes at silicon-copper electrodes in ionic liquid battery electrolyte[J]. Journal of Physical Chemistry C, 2012,116(28):14764-14771.
[19] Ota H, Sakata Y, Wang X M, et al. Characterization of lithium electrode in lithium imides/ethylene carbonate and cyclic ether electrolytes[J]. Journal of the Electrochemical Society, 2004,151(3):A437-A446.
[20] Howlett P C, Brack N, Hollenkamp A F, et al. Characterization of the lithium surface in n-methyl-n-alkylpyrrolidinium bis(trifluoromethanesulfonyl) amide room-temper-ature ionic liquid electrolytes[J]. Journal of the Electrochemical Society, 2006,153(3):A595-A606.
[21] Deepa M, Agnihotry S A, Gupta D, et al. Ion-pairing effects and ion-solvent-polymer interactions in LiN(CF3SO2)2-PC-PMMA electrolytes: a FTIR study[J]. Electrochimica Acta, 2004,49(3):373-383.
[22] Aurbach D, Pollak E, Elazari R, et al. On the surface chemical aspects of very high energy density, rechargeable Li-sulfur batteries[J]. Journal of The Electrochemical Society, 2009,156(8):A694-A702.
[23] Lee H, Lee D J, Lee J N, et al. Chemical aspect of oxygen dissolved in a dimethyl sulfoxide-based electrolyte on lithium metal[J]. Electrochimica Acta, 2014,123:419-425.
[24] Nguyen C C, Song S W. Characterization of SEI layer formed on high performance Si-Cu anode in ionic liquid battery electrolyte[J]. Electrochemistry Communications, 2010,12(11):1593-1595.
[25] Xiao A, Yang L, Lucht B L, et al. Examining the solid electrolyte interphase on binder-free graphite electrodes[J]. Journal of The Electrochemical Society, 2009,156(4):A318-A327.
[26] Etacheri V, Haik O, Goffer Y, et al. Effect of fluoroethylene carbonate (FEC) on the performance and surface chemistry of Si-nanowire Li-ion battery anodes[J]. Langmuir, 2012,28(1):965-976.
[27] Michan A L, Parimalam B S, Leskes M, et al. Fluoroethylene carbonate and vinylene carbonate reduction: understanding lithium-ion battery electrolyte additives and solid electrolyte interphase formation[J]. Chemistry of Materials, 2016,28(22):8149-8159.
[28] Zhang X Q, Cheng X B, Chen X, et al. Fluoroethylene carbonate additives to render uniform Li deposits in lithium metal batteries[J]. Advanced Functional Materials, 2017,27(10):1605989.
文章导航

/