锂硫电池及关键材料研究进展
收稿日期: 2020-06-10
修回日期: 2020-08-10
网络出版日期: 2020-08-18
基金资助
国家自然科学基金项目(U1805254);国家自然科学基金项目(21673196);国家自然科学基金项目(21703186);国家自然科学基金项目(U1705255);国家自然科学基金项目(21773192);国家自然科学基金项目(21975211);中央高校基础研究经费(20720190035);厦门大学南强青年拔尖人才计划
Research Progress of Key Components in Lithium-Sulfur Batteries
Received date: 2020-06-10
Revised date: 2020-08-10
Online published: 2020-08-18
锂硫电池因具有远高于传统锂离子电池的理论比容量和质量能量密度,而受到人们的广泛关注,近年来一直是高能锂金属电池领域的研究热点之一. 然而这一体系的一些固有特性问题依然没有得到解决,无法实现稳定理论容量输出,严重阻碍了锂硫电池的实际应用. 其中,比较突出的问题是电池充放电过程中生成可溶性中间产物-多硫化物-对硫基正极、锂基负极和电解液等电池关键组成部分具有深刻的影响. 本综述从多硫化物的热力学和动力学等性质入手,详细介绍了锂硫电池中关键材料的功能化设计和优化策略,并对未来的发展做出展望.
陈嘉嘉 , 董全峰 . 锂硫电池及关键材料研究进展[J]. 电化学, 2020 , 26(5) : 648 -662 . DOI: 10.13208/j.electrochem.200642
Due to the much higher theoretical specific capacity and energy density than the ones of traditional lithium ion battery, Li-S batteries have long been at the pinnacle in the realms of high-energy Li-metal batteries. However, the complicated electrochemical reactions on the sulfur cathode and Li anode, induced by the thermodynamic and kinetic behaviors of lithium polysulfides, are the intrinsic bottleneck to realize the full potential of Li-S batteries for practical application. In this review, we firstly discuss the roles, and thermodynamic and kinetic behaviors of polysulfides in the charging and discharging processes of Li-S batteries. Then, the functional design and optimization strategy of sulfur cathode, Li anode and electrolytes are introduced in detail. Finally, new insights are prospected for future advanced Li-S batteries.
[1] | Bruce P G, Freunberger S A, Hardwick L J, et al. Li-O2 and Li-S batteries with high energy storage[J]. Nature Materials, 2011,11(1):19-29. |
[2] | Liu D H, Zhang C, Zhou G M, et al. Catalytic effects in lithium-sulfur batteries: Promoted sulfur transformation and reduced shuttle effect[J]. Advanced Science, 2018,5(1):1700270. |
[3] | Pang Q, Liang X, Kwok C Y, et al. Advances in lithium-sulfur batteries based on multifunctional cathodes and electrolytes[J]. Nature Energy, 2016,1(9):16132. |
[4] | Wang H Q, Zhang W C, Xu J Z, et al. Advances in polar materials for lithium-sulfur batteries[J]. Advanced Functional Materials, 2018,28(38):1707520. |
[5] | Fan L L, Li M, Li X F, et al. Interlayer material selection for lithium-sulfur batteries[J]. Joule, 2019,3(2):361-386. |
[6] | Sun Y Z, Huang J Q, Zhao C Z, et al. A review of solid electrolytes for safe lithium-sulfur batteries[J]. Science China-Chemistry, 2017,60(12):1508-1526. |
[7] | Li G R, Wang S, Zhang Y N, et al. Revisiting the role of polysulfides in lithium-sulfur batteries[J]. Advanced Materials, 2018,30(22):1705590. |
[8] | Li T, Bai X, Gulzar U, et al. A comprehensive understanding of lithium-sulfur battery technology[J]. Advanced Functional Materials, 2019,29(32):1901730. |
[9] | Chen X, Hou T Z, Persson K A, et al. Combining theory and experiment in lithium-sulfur batteries: Current progress and future perspectives[J]. Materials Today, 2018,22:142-158. |
[10] | Chung S H, Manthiram A. Current status and future prospects of metal-sulfur batteries[J]. Advanced Materials, 2019,31(27):1901125. |
[11] | Mikhaylik Y V, Akridge J R. Polysulfide shuttle study in the Li/S battery system[J]. Journal of the Electrochemical Society, 2004,151(11):A1969-A1976. |
[12] | Yan Y Y, Cheng C, Zhang L, et al. Deciphering the reaction mechanism of lithium-sulfur batteries by in situ/oper-ando synchrotron-based characterization techniques[J]. Advanced Energy Materials, 2019,9(18):1900148. |
[13] | Zhang L, Qian T, Zhu X Y, et al. In situ optical spectroscopy characterization for optimal design of lithium-sulfur batteries[J]. Chemical Society Reviews, 2019,48(22):5432-5453. |
[14] | Lin D C, Liu Y Y, Cui Y. Reviving the lithium metal anode for high-energy batteries[J]. Nature Nanotechnology, 2017,12(3):194-206. |
[15] | Cuisinier M, Cabelguen P E, Evers S, et al. Sulfur speciation in Li-S batteries determined by operando X-ray absorption spectroscopy[J]. Journal of Physical Chemistry Letters, 2013,4(19):3227-3232. |
[16] | Chen J J, Yuan R M, Feng J M, et al. Conductive lewis base matrix to recover the missing link of Li2S8 during the sulfur redox cycle in Li-S battery[J]. Chemistry of Materials, 2015,27(6):2048-2055. |
[17] | Cuisinier M, Hart C, Balasubramanian M, et al. Radical or not radical: Revisiting lithium-sulfur electrochemistry in nonaqueous electrolytes[J]. Advanced Energy Materials, 2015,5(16):1-6. |
[18] | Steudel R, Chivers T. The role of polysulfide dianions and radical anions in the chemical, physical and biological sciences, including sulfur-based batteries[J]. Chemical Society Reviews, 2019,48(12):3279-3319. |
[19] | Wujcik K H, Wang D R, Raghunathan A, et al. Lithium polysulfide radical anions in ether-based solvents[J]. Journal of Physical Chemistry C, 2016,120(33):18403-18410. |
[20] | Liu X, Huang J Q, Zhang Q, et al. Nanostructured metal oxides and sulfides for lithium-sulfur batteries[J]. Advanced Materials, 2017,29(20):1601759. |
[21] | Andersen A, Rajput N N, Han K S, et al. Structure and dynamics of polysulfide clusters in a nonaqueous solvent mixture of 1,3-dioxolane and 1,2-dimethoxyethane[J]. Chemistry of Materials, 2019,31(7):2308-2319. |
[22] | Park C, Ronneburg A, Risse S, et al. Structural and transport properties of Li/S battery electrolytes: role of the polysulfide species[J]. Journal of Physical Chemistry C, 2019,123(16):10167-10177. |
[23] | Gupta A, Bhargav A, Jones J P, et al. Influence of lithium polysulfide clustering on the kinetics of electrochemical conversion in lithium-sulfur batteries[J]. Chemistry of Materials, 2020,32(5):2070-2077. |
[24] | Partovi-Azar P, Kühne T D, Kaghazchi P. Evidence for the existence of Li2S2 clusters in lithium-sulfur batteries: Ab initio Raman spectroscopy simulation[J]. Physical Chemistry Chemical Physics, 2015,17(34):22009-22014. |
[25] | Kumaresan K, Mikhaylik Y, White R E. A mathematical model for a lithium-sulfur cell[J]. Journal of the Electrochemical Society, 2008,155(8):A576-A582. |
[26] | Mikhaylik Y V, Akridge J R. Low temperature performance of Li/S batteries[J]. Journal of the Electrochemical Society, 2003,150(3):A306-A311. |
[27] | Zhang B(张波), Liu J(刘佳), Liu X C(刘晓晨), et al. Electrochemical properties of sulfur in different carbon support materials[J]. Journal of Electrochemistry (电化学), 2019,25(6):749-756. |
[28] | Zang J, An T, Dong Y, et al. Hollow-in-hollow carbon spheres with hollow foam-like cores for lithium-sulfur batteries[J]. Nano Research, 2015,8(8):2663-2675. |
[29] | Chen J J, Zhang Q, Shi Y N, et al. A hierarchical architecture S/MWCNT nanomicrosphere with large pores for lithium sulfur batteries[J]. Physical Chemistry Chemical Physics, 2012,14(16):5376-5382. |
[30] | Wei Z K, Chen J J, Qin L L, et al. Two-step hydrothermal method for synjournal of sulfur-graphene hybrid and its application in lithium sulfur batteries[J]. Journal of the Electrochemical Society, 2012,159(8):A1236-A1239. |
[31] | Ji X, Lee K T, Nazar L F. A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries[J]. Nature Materials, 2009,8(6):500-506. |
[32] | Ye J C, Chen J J, Yuan R M, et al. Strategies to explore and develop reversible redox reactions of Li-S in electrode architectures using silver-polyoxometalate clusters[J]. Journal of the American Chemical Society, 2018,140(8):3134-3138. |
[33] | Li Y J, Fan J M, Zheng M S, et al. A novel synergistic composite with multi-functional effects for high-performance Li-S batteries[J]. Energy & Environmental Science, 2016,9(6):1998-2004. |
[34] | Deng D R, Xue F, Bai C D, et al. Enhanced adsorptions to polysulfides on graphene-supported BN nanosheets with excellent Li-S battery performance in a wide temperature range[J]. ACS Nano, 2018,12(11):11120-11129. |
[35] | Deng D R, Xue F, Jia Y J, et al. Co4N nanosheet assembled mesoporous sphere as a matrix for ultrahigh sulfur content lithium-sulfur batteries[J]. ACS Nano, 2017,11(6):6031-6039. |
[36] | Li Y, Fan J, Zhang J, et al. a honeycomb-like Co@N-C composite for ultra-high sulfur loading Li-S batteries[J]. ACS Nano, 2017,11(11):11417-11424. |
[37] | Jia P, Hu T D, He Q B, et al. Synjournal of a macroporous conjugated polymer framework: Iron doping for highly stable, highly efficient lithium-sulfur batteries[J]. ACS Applied Materials & Interfaces, 2019,11(3):3087-3097. |
[38] | Xu J, Bi S M, Tang W Q, et al. Duplex trapping and charge transfer with polysulfides by a diketopyrrolopyrrole-based organic framework for high-performance lithium-sulfur batteries[J]. Journal of Materials Chemistry A, 2019,7(30):18100-18108. |
[39] | Hou T Z, Chen X, Peng H J, et al. Design principles for heteroatom-doped nanocarbon to achieve strong anchoring of polysulfides for lithium-sulfur batteries[J]. Small, 2016,12(24):3283-3291. |
[40] | Zheng J M, Tian J, Wu D X, et al. Lewis acid-base interactions between polysulfides and metal organic framework in lithium sulfur batteries[J]. Nano Letters, 2014,14(5):2345-2352. |
[41] | Seh Z W, Yu J H, Li W Y, et al. Two-dimensional layered transition metal disulphides for effective encapsulation of high-capacity lithium sulphide cathodes[J]. Nature Communications, 2014,5:5017. |
[42] | Wang Y K, Zhang R F, Pang Y C, et al. Carbon@titanium nitride dual shell nanospheres as multi-functional hosts for lithium sulfur batteries[J]. Energy Storage Materials, 2019,16:228-235. |
[43] | Salem H A, Babu G, Rao C V, et al. Electrocatalytic polysulfide traps for controlling redox shuttle process of Li-S batteries[J]. Journal of the American Chemical Society, 2015,137(36):11542-11545. |
[44] | Zhou G M, Tian H Z, Jin Y, et al. Catalytic oxidation of Li2S on the surface of metal sulfides for Li-S batteries[J]. Proceedings of the National Academy of Sciences of the United States of America, 2017,114(5):840-845. |
[45] | Liang X, Hart C, Pang Q, et al. A highly efficient polysulfide mediator for lithium-sulfur batteries[J]. Nature Communications, 2015,6:5682. |
[46] | Tsao Y, Lee M, Miller E C, et al. Designing a quinone-based redox mediator to facilitate Li2S oxidation in Li-S batteries[J]. Joule, 2019,3(3):872-884. |
[47] | Liang X, Kwok C Y, Marzano F L, et al. Tuning transition metal oxide-sulfur interactions for long life lithium sulfur batteries: The “goldilocks” principle[J]. Advanced Energy Materials, 2015,6:1501636. |
[48] | Li G, Wang X L, Seo M H, et al. Chemisorption of polysulfides through redox reactions with organic molecules for lithium-sulfur batteries[J]. Nature Communications, 2018,9(1):705. |
[49] | Wu X, Liu N, Guan B, et al. Redox mediator: A new strategy in designing cathode for prompting redox process of Li-S batteries[J]. Advanced Science, 2019,6(21):1900958. |
[50] | Meini S, Elazari R, Rosenman A, et al. The use of redox mediators for enhancing utilization of Li2S cathodes for advanced Li-S battery systems[J]. Journal of Physical Chemistry Letters, 2014,5(5):915-918. |
[51] | Gerber L C H, Frischmann P D, Fan F Y, et al. Three-dimensional growth of Li2S in lithium-sulfur batteries promoted by a redox mediator[J]. Nano Letters, 2016,16(1):549-554. |
[52] | Liu Y Y, Tzeng Y K, Lin D C, et al. An ultrastrong double-layer nanodiamond interface for stable lithium metal anodes[J]. Joule, 2018,2(8):1595-1609. |
[53] | Chen L, Huang Z N, Shahbazian-Yassar R, et al. Directly formed alucone on lithium metal for high performance Li batteries and Li-S batteries with high sulfur mass-loading[J]. ACS Applied Materials & Interfaces, 2018,10(8):7043-7051. |
[54] | Shen X, Zhang R, Chen X, et al. The failure of solid electrolyte interphase on Li metal anode: Structural uniformity or mechanical strength?[J]. Advanced Energy Materials, 2020,10(10):1903645. |
[55] | Gu Y, Wang W W, Li Y J, et al. Designable ultra-smooth ultra-thin solid-electrolyte interphases of three alkali metal anodes[J]. Nature Communications, 2018,9(1):1339. |
[56] | Ma G Q, Wen Z Y, Wu M F, et al. A lithium anode protection guided highly-stable lithium-sulfur battery[J]. Chemical Communications, 2014,50(91):14209-14212. |
[57] | Zhang R, Cheng X B, Zhao C Z, et al. Conductive nanostructured scaffolds render low local current density to inhibit lithium dendrite growth[J]. Advanced Materials, 2016,28(11):2155-2162. |
[58] | Yang C P, Yin Y X, Zhang S F, et al. Accommodating lithium into 3D current collectors with a submicron skeleton towards long-life lithium metal anodes[J]. Nature Communications, 2015,6(1):8058. |
[59] | Xu P, Lin X D, Hu X Y, et al. High reversible Li plating and stripping by in-situ construction a multifunctional lithium-pinned array[J]. Energy Storage Materials, 2020,28:188-195. |
[60] | Cheng X B, Peng H J, Huang J Q, et al. Dendrite-free nanostructured anode: Entrapment of lithium in a 3D fibrous matrix for ultra-stable lithium-sulfur batteries[J]. Small, 2014,10(21):4257-4263. |
[61] | Zhang R, Chen X, Shen X, et al. Coralloid carbon fiber-based composite lithium anode for robust lithium metal batteries[J]. Joule, 2018,2(4):764-777. |
[62] | Gu Y, Xu H Y, Zhang X G, et al. Lithiophilic faceted Cu(100) surfaces: High utilization of host surface and cavities for lithium metal anodes[J]. Angewandte Chemie International Edition, 2018,58(10):3092-3096. |
[63] | Li K, Hu Z Y, Ma J Z, et al. A 3D and stable lithium anode for high-performance lithium-iodine batteries[J]. Advanced Materials, 2019,31(33):1902399. |
[64] | Cheng X B, Yan C, Chen X, et al. Implantable solid electrolyte interphase in lithium-metal batteries[J]. Chem, 2017,2(2):258-270. |
[65] | Li W Y, Yao H B, Yan K, et al. The synergetic effect of lithium polysulfide and lithium nitrate to prevent lithium dendrite growth[J]. Nature Communications, 2015,6(1):7436. |
[66] | Zhan L, Liu Z C, Fu W J, et al. Phosphorous pentasulfide as a novel additive for high-performance lithium-sulfur batteries[J]. Advanced Functional Materials, 2013,23(8):1064-1069. |
[67] | Choi J W, Cheruvally G, Kim D S, et al. Rechargeable lithium/sulfur battery with liquid electrolytes containing toluene as additive[J]. Journal of Power Sources, 2008,183(1):441-445. |
[68] | Zheng J M, Engelhard M H, Mei D H, et al. Electrolyte additive enabled fast charging and stable cycling lithium metal batteries[J]. Nature Energy, 2017,2(3):17012. |
[69] | Wu F, Qian J, Chen R J, et al. An effective approach to protect lithium anode and improve cycle performance for Li-S batteries[J]. ACS Applied Materials & Interfaces, 2014,6(17):15542-15549. |
[70] | Zu C X, Dolocan A, Xiao P H, et al. Breaking down the crystallinity: The path for advanced lithium batteries[J]. Advanced Energy Materials, 2016,6(5):1501933. |
[71] | Braga M H, Oliveira J E, Kai T H, et al. Extraordinary dielectric properties at heterojunctions of amorphous ferroelectrics[J]. Journal of the American Chemical Society, 2018,140(51):17968-17976. |
[72] | Zhou Y N, Wu C L, Zhang H, et al. Electrochemical reactivity of Co-Li2S nanocomposite for lithium-ion batteries[J]. Electrochimica Acta, 2007,52(9):3130-3136. |
[73] | Fu K K, Gong Y H, Hitz G T, et al. Three-dimensional bilayer garnet solid electrolyte based high energy density lithium metal-sulfur batteries[J]. Energy & Environmental Science, 2017,10(7):1568-1575. |
[74] | Zhao C Z, Zhang X Q, Cheng X B, et al. An anion-immobilized composite electrolyte for dendrite-free lithium metal anodes[J]. Proceedings of the National Academy of Sciences of the United States of America, 2017,114(42):11069-11074. |
[75] | Chen J H(陈加航), Yang H J(杨慧军), Guo C(郭城), et al. Current status and prospect of battery configuration in Li-S system[J]. Journal of Electrochemistry (电化学), 2019,25(1):3-16. |
[76] | Gupta A, Bhargav A, Manthiram A. Highly solvating ele-ctrolytes for lithium-sulfur batteries[J]. Advanced Energy Materials, 2019,9(6):1803096. |
[77] | Cheng L, Curtiss L A, Zavadil K R, et al. Sparingly solvating electrolytes for high energy density lithium-sulfur batteries[J]. ACS Energy Letters, 2016,1(3):503-509. |
[78] | Yang H J, Chen J H, Yang J, et al. Dense and high loading sulfurized pyrolyzed poly(acrylonitrile)(S@pPAN) cathode for rechargeable lithium batteries[J]. Energy Storage Materials, 2020,31:187-194. |
[79] | Wu F X, Lee J T, Zhao E B, et al. Graphene-Li2S-carbon nanocomposite for lithium-sulfur batteries[J]. ACS Nano, 2016,10:1333-1340. |
[80] | Sakuda A, Taguchi N, Takeuchi T, et al. Amorphous TiS4 positive electrode for lithium-sulfur secondary batteries[J]. Electrochemistry Communications, 2013,31:71-75. |
[81] | Ye H L, Ma L, Zhou Y, et al. Amorphous MoS3 as the sulfur-equivalent cathode material for room-temperature Li-S and Na-S batteries[J]. Proceedings of the National Academy of Sciences of the United States of America, 2017,114(50):13091-13096. |
[82] | Kim J S, Yoon W Y. Improvement in lithium cycling efficiency by using lithium powder anode[J]. Electrochimica Acta, 2004,50:531-534. |
[83] | Zhao J, Zhou G M, Yan K, et al. Air-stable and freestanding lithium alloy/graphene foil as an alternative to lithium metal anodes[J]. Nature Nanotechnology, 2017,12(10):993-999. |
/
〈 |
|
〉 |