基于有机物电极的电化学能量存储与转化
收稿日期: 2020-05-08
修回日期: 2020-05-22
网络出版日期: 2020-06-17
基金资助
国家自然科学基金项目资助(21935003);国家自然科学基金项目资助(21805126);国家自然科学基金项目资助(21622303)
Electrochemical Energy Storage and Conversion Based on Organic Electrodes
Received date: 2020-05-08
Revised date: 2020-05-22
Online published: 2020-06-17
由于高安全的特性,水系二次电池被认为是未来大型储能的有效解决方案之一. 然而,现有水系电池主要以含金属元素的无机化合物为电极活性材料,其在大型储能中的实际应用仍受到循环寿命、环境问题、原料成本或金属元素丰度的限制. 相较于无机电极材料,部分有机电极材料具有原料丰富、结构丰富、可持续及环境友好等优点. 此外,有机物材料分子内空间大,能够存储不同价态电荷,因此近年来被广泛关注. 本文综述了课题组近期在有机物电极方面的研究进展,内容聚焦含羰基有机物通过C=O/C-O-的可逆转化存储单价金属阳离子(Li+, Na+)、双价金属阳离子(Zn2+)、质子(H+)所涉及的电化学过程,及其在水系锂、钠离子电池、水系锌离子电池、质子电池以及分步电解水中的应用.
黄健航 , 董晓丽 , 郭昭薇 , 马元元 , 王艳荣 , 王永刚 . 基于有机物电极的电化学能量存储与转化[J]. 电化学, 2020 , 26(4) : 486 -494 . DOI: 10.13208/j.electrochem.200445
Aqueous batteries have been considered to be a competitive candidate for large-scale energy storage. However, most of aqueous batteries adopt inorganic electrode materials with metallic elements, which are based on the reversible insertion of metal ions, making their application being highly hindered by limited cycle life, environmental issue, high cost and low reserves. On the other hand, organic electrode materials offer the advantages of abundant reserves, tunable structures, renewability and environmental benignity. Furthermore, the wide internal space enables these organics to flexibly store various charge carriers. Organics have been investigated as the alternative to inorganic electrode materials. Herein, we review the progress in organic electrode materials reported by our group, focusing on the reaction chemistry of organics with carbonyls for storing monovalent ions (Li+, Na+), divalent ion (Zn2+) and proton (H+), and the corresponding application in the field of metal ion batteries, proton batteries and the water electrolysis as redox buffer electrodes.
[1] | Dunn B, Kamath H, Tarascon J M. Electrical energy storage for the grid: a battery of choices[J]. Science, 2011,334(6058):928-935. |
[2] | Parker J F, Chervin C N, Pala I R, et al. Rechargeable nickel-3D zinc batteries: An energy-dense, safer alternative to lithium-ion[J]. Science, 2017,356(6336):415-418. |
[3] | Luo J Y, Cui W J, He P, et al. Raising the cycling stability of aqueous lithium-ion batteries by eliminating oxygen in the electrolyte[J]. Nature Chemistry, 2010,2(9):760-765. |
[4] | Li W, Dahn J R, Wainwright D S. Rechargeable lithium batteries with aqueous-electrolytes[J]. Science, 1994,264(5162):1115-1118. |
[5] | Goodenough J B. Electrochemical energy storage in a sustainable modern society[J]. Energy & Environmental Science, 2014,7(1):14-18. |
[6] | Zhao C L, Lu Y X, Yue J M, et al. Advanced Na metal anodes[J]. Journal of Energy Chemistry, 2018, 27(6):1584-1596. |
[7] | Huang J H, Guo Z W, Ma Y Y, et al. Recent progress of rechargeable batteries using mild aqueous electrolytes[J]. Small Methods, 2019,3(1):1800272. |
[8] | Fang G Z, Zhou J, Pan A Q, et al. Recent advances in aqueous zinc-ion batteries[J]. ACS Energy Letters, 2018,3(10):2480-2501. |
[9] | Huang J H, Wang Z, Hou M Y, et al. Polyaniline-intercalated manganese dioxide nanolayers as a high-performance cathode material for an aqueous zinc-ion battery[J]. Nature Communications, 2018,9(1):2906. |
[10] | Lu Y, Chen J. Prospects of organic electrode materials for practical lithium batteries[J]. Nature Reviews Chemistry, 2020,4(3):127-142. |
[11] | Song Z P, Zhou H S. Towards sustainable and versatile energy storage devices: an overview of organic electrode materials[J]. Energy & Environmental Science, 2013,6(8):2280-2301. |
[12] | Liang Y L, Yao Y. Positioning organic electrode materials in the battery landscape[J]. Joule, 2018,2(9):1690-1706. |
[13] | H?upler B, Wild A, Schubert U S. Carbonyls: powerful organic materials for secondary batteries[J]. Advanced Energy Materials, 2015,5(11):1402034. |
[14] | Peng H L, Yu Q C, Wang S P, et al. Molecular design strategies for electrochemical behavior of aromatic carbonyl compounds in organic and aqueous electrolytes[J]. Advanced Science, 2019,6(17):1900431. |
[15] | Chen L, Li W Y, Guo Z W, et al. Aqueous lithium-ion batteries using O2 self-elimination polyimides electrodes[J]. Journal of The Electrochemical Society, 2015,162(10):A1972-A1977. |
[16] | Guo Z W, Ma Y Y, Dong X L, et al. An environmentally friendly and flexible aqueous zinc battery using an organic cathode[J]. Angewandte Chemie International Edition, 2018,57(36):11737-11741. |
[17] | Armand M, Grugeon S, Vezin H, et al. Conjugated dicarboxylate anodes for Li-ion batteries[J]. Nature Materials, 2009,8(2):120-125. |
[18] | Qin H, Song Z P, Zhan H, et al. Aqueous rechargeable alkali-ion batteries with polyimide anode[J]. Journal of Power Sources, 2014,249:367-372. |
[19] | Liang Y L, Jing Y, Gheytani S, et al. Universal quinone electrodes for long cycle life aqueous rechargeable batteries[J]. Nature Materials, 2017,16(8):841-850. |
[20] | Jiang L W, Lu Y X, Zhao C L, et al. Building aqueous K-ion batteries for energy storage[J]. Nature Energy, 2019,4(6):495-503. |
[21] | Dong X L, Chen L, Liu J Y, et al. Environmentally-friendly aqueous Li(or Na)-ion battery with fast electrode kinetics and super-long life[J]. Science Advances, 2016,2:e1501038. |
[22] | Dong X L, Yu H C, Ma Y Y, et al. All-organic rechargeable battery with reversibility supported by “water-in-salt” electrolyte[J]. Chemistry - A European Journal, 2017,23(11):2560-2565. |
[23] | Xie J, Zhang Q C. Recent progress in multivalent metal (Mg, Zn, Ca, and Al) and metal-ion rechargeable batteries with organic materials as promising electrodes[J]. Small, 2019,15(15):e1805061. |
[24] | Zhao Q, Huang W W, Luo Z Q, et al. High-capacity aqueous zinc batteries using sustainable quinone electrodes[J]. Science Advances, 2018,4(3):eaao1761. |
[25] | Wang Y R, Wang C X, Ni Z G, et al. Binding zinc ion by carboxyl groups from adjacent molecules toward long-life aqueous zinc-organic battery[J]. Advanced Materials, 2020,32(16):2000338. |
[26] | Wang X F, Bommier C, Jian Z L, et al. Hydronium-ion batteries with perylenetetracarboxylic dianhydride crystals as an electrode[J]. Angewandte Chemie International Edition, 2017,56(11):2909-2913. |
[27] | Guo Z W, Huang J H, Dong X L, et al. An organic/inorganic electrode-based hydronium-ion battery[J]. Nature Communications, 2020,11(1):959. |
[28] | Rausch B, Symes M D, Chisholm G, et al. Decoupled catalytic hydrogen evolution from a molecular metal oxide redox mediator in water splitting[J]. Science, 2014,345(6202):1326-1330. |
[29] | Mallouk T E. Water electrolysis: Divide and conquer[J]. Nature Chemistry, 2013,5(5):362-363. |
[30] | Ma Y Y (马元元), Guo Z W (郭昭薇), Wang Y G (王永刚), et al. The new application of battery-electrode reaction: decoupled hydrogen production in water electrolysis[J]. Journal of Electrochemistry (电化学), 2018,24(5):41-51. |
[31] | Symes M D, Cronin L. Decoupling hydrogen and oxygen evolution during electrolytic water splitting using an electron-coupled-proton buffer[J]. Nature Chemistry, 2013,5(5):403-409. |
[32] | Wallace A G, Symes M D. Decoupling strategies in electrochemical water splitting and beyond[J]. Joule, 2018,2(8):1390-1395. |
[33] | Ma Y Y, Guo Z W, Dong X L, et al. Organic proton-buffer electrode to separate hydrogen and oxygen evolution in acid water electrolysis[J]. Angewandte Chemie International Edition, 2019,58(14):4622-4626. |
[34] | Ma Y Y, Dong X L, Wang Y G, et al. Decoupling hydrogen and oxygen production in acidic water electrolysis using a polytriphenylamine-based battery electrode[J]. Angewandte Chemie International Edition, 2018,57(11):2904-2908. |
/
〈 |
|
〉 |