欢迎访问《电化学(中英文)》期刊官方网站,今天是
研究论文

NCA三元锂离子电池分荷电状态循环的热特性和容量衰退研究

  • 王存 ,
  • 张维江 ,
  • 何腾飞 ,
  • 雷博 ,
  • 史尤杰 ,
  • 郑耀东 ,
  • 罗伟林 ,
  • 蒋方明
展开
  • 1. 中国科学院广州能源研究所,中国科学院可再生能源重点实验室,广东省新能源和可再生能源研究开发与应用重点实验室,广东 广州 510640
    2. 直流输电技术国家重点实验室(南方电网科学研究院有限责任公司),广东 广州 510063
    3. 中国南方电网有限责任公司,广东 广州 510063
    4. 上海动力储能电池系统工程技术有限公司,上海 200241
    5. 中国科学院大学,北京 100049

收稿日期: 2020-05-07

  修回日期: 2020-06-12

  网络出版日期: 2020-06-15

基金资助

国家重点研发计划课题No(2018YFB0905300);国家重点研发计划课题No(2018YFB0905303);广东省新能源和可再生能源研究开发与应用重点实验室基金资助No(E039030101);广东省新能源和可再生能源研究开发与应用重点实验室基金资助No(Y909jh1)

Degradation and Thermal Characteristics of LiNi0.8Co0.15Al0.05O2/Graphite Lithium Ion Battery after Different State of Charge Ranges Cycling

  • Cun WANG ,
  • Wei-jiang ZHANG ,
  • Teng-fei HE ,
  • Bo LEI ,
  • You-jie SHI ,
  • Yao-dong ZHENG ,
  • Wei-lin LUO ,
  • Fang-ming JIANG
Expand
  • 1. Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, CAS Key Laboratory of Renewable Energy, Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, China
    2. State Key Laboratory of HVDC, Electric Power Research Institute, China Southern Power Grid, Guangzhou 510063
    3. China Southern Power Grid,Guangzhou 510063
    4. Shanghai Power& Energy Storage Battery System Engineering Technology Co. Ltd., Shanghai 200241;
    5. University of Chinese Academy of Sciences, Beijing 100049

Received date: 2020-05-07

  Revised date: 2020-06-12

  Online published: 2020-06-15

摘要

层状三元材料LiNi0.8Co0.15Al0.05O2(NCA)具有高能量密度和高比容量,在电动汽车领域占据重要地位.但是较差的容量保持率和热安全问题限制了其应用. 本文研究了18650型NCA/graphite(2.4 Ah)锂电池分区间循环容量衰退机理和热行为. 所考虑的荷电状态(state of charge,SOC)区间有0% ~ 20%(低)、20% ~ 70%(中)、70% ~ 100%(高)及0% ~ 100%(全)四个区间. 为了获得电池在不同SOC区间循环后衰减状况,以100个循环为一个周期,每个循环周期结束后,在25 oC下测试四个电池的基础特性,包括容量、容量增量(incremental capacity,IC)、电阻及电化学阻抗谱(electrochemical impedance spectroscopy, EIS),同时监测电池放电时的温度来讨论电池不同区间循环后的热行为. 测试结果表明,电池在全区间循环会降低电池寿命,而在非全区间循环的电池都能一定程度上减缓电池衰老的速度. 另外,全区间循环热特性最差而中端循环则表现出较好的热性能,对容量增量曲线分析发现,在高中低区间的性能衰退的主要原因是活性锂离子的损失,而在全区间还包括活性材料的损失和反应内阻的增大.

本文引用格式

王存 , 张维江 , 何腾飞 , 雷博 , 史尤杰 , 郑耀东 , 罗伟林 , 蒋方明 . NCA三元锂离子电池分荷电状态循环的热特性和容量衰退研究[J]. 电化学, 2020 , 26(6) : 777 -788 . DOI: 10.13208/j.electrochem.200507

Abstract

The LiNi0.8Co0.15Al0.05O2 (NCA) cathode exhibits high energy density and large reversible capacity, which plays an essential role in the field of electric vehicles (EVs). However, low capacity retention and poor thermal stability limit its application. Few literatures are found for the capacity degradation mechanism of NCA/graphite batteries at home and abroad. The different state of charge (SOC) ranges cycle degradation behaviors of 18650-type NCA/graphite (2.4 Ah) battery were studied in this paper. The SOC ranges considered were 0% ~ 20% (low), 20% ~ 70% (medium), 70% ~ 100% (high), and 0% ~ 100% (whole). To obtain the states of the batteries being cycled in different SOC ranges, the basic characteristics of the four batteries, including capacity, incremental capacity (IC), internal resistance, and electrochemical impedance spectroscopy (EIS), were tested at 25 oC before and after every 100-cycle up to 400 cycles. At the same time, the surface temperature of the batteries during discharging was monitored to analyze the thermal characteristics. A detailed analysis for the IC curve of NCA/graphite was performed, making the mechanism of capacity degradation more clear. The results show that the battery life would be shortened after the whole SOC range cycling and the battery aging rate would be reduced to a certain extent upon cycled in the partial range. In addition, the battery thermal characteristic became the worst after the whole SOC range cycling, but the battery thermal performance became the best after the medium SOC range cycling. Analyzing IC data reveals that the main reason for the performance degradation of batteries in the high, medium and low SOC ranges cycling may be the loss of active lithium ions, and that in the high SOC range cycling may also include the loss of active materials and the increase of reaction internal resistance.

参考文献

[1] Goodenough J B, Park K S.The Li-ion rechargeable battery: a perspective[J]. Journal of the American Chemical Society, 2013, 135(4): 1167-1176.
[2] Armand M, Tarascon J M.Building better batteries[J]. Nature, 2008, 451(7179): 652-657.
[3] Wang J(王剑), Li T J(李桐进), Qi L(其鲁). Progress in high power lithium-ion secondary battery[J]. Acta Physico-himica Sinica(物理化学学报), 2007, 23(Supp): 75-79.
[4] Tran H Y, T?ubert C, Wohlfahrt-Mehrens M.Influence of the technical process parameters on structural, mechanical and electrochemical properties of LiNi0.8Co0.15Al0.05O2 based electrodes - A review[J]. Progress in Solid State Chemistry, 2014, 42(4): 118-127.
[5] Chen C H, Liu J, Stoll M E, et al. Aluminum-doped lithium nickel cobalt oxide electrodes for high-power lithium-ion batteries[J]. Journal of Power Sources, 2004, 128(2): 278-285
[6] Zhecheva E, Stoyanova R, Alc$\acute{a}$ntara R, et al.Cation order/disorder in lithium transition-metal oxides as insertion electrodes for lithium-ion batteries[J]. Pure and Applied Chemisty, 2002, 74(10): 1885-1894.
[7] Sasaki T, Nonaka T, Oka H, et al.Capacity-fading mechanisms of LiNiO2-based lithium-ion batteries I. Analysis by electrochemical and spectroscopic examination[J]. Journal of The Electrochemical Society, 2009, 156(4): A289-A293.
[8] Muto S, Sasano Y, Tatsumi K, et al.Capacity-fading mech-anisms of LiNiO2-based lithium-ion batteries II. Diagnostic analysis by electron microscopy and spectroscopy[J]. Journal of The Electrochemical Society, 2009, 156(5): A371-A377.
[9] Kang S H, Yoon W S, Nam K W, et al.Investigating the first-cycle irreversibility of lithium metal oxide cathodes for Li batteries[J]. Journal of Materials Science, 2008, 43(14): 4701-4706.
[10] Bang H J, Joachin H, Yang H, et al.Contribution of the structural changes of LiNi0.8Co0.15Al0.05O2 cathodes on the exothermic reactions in Li-ion cells[J]. Journal of The Electrochemical Society, 2006, 153(4): A731-A737.
[11] Dubarry M, Truchot C, Cugnet M, et al.Evaluation of commercial lithium-ion cells based on composite positive electrode for plug-in hybrid electric vehicle applications. part I: initial characterizations[J]. Journal of Power Sources, 2011, 196: 10328-10335.
[12] Han X B, Ouyang M G, Lu L G, et al.A comparative study of commercial lithium ion battery bycle life in electrical vehicle: aging mechanism identification[J]. Journal of Power Sources, 2014, 251: 38-54.
[13] Han X B, Lu L G, Zheng Y J, et al.A review on the key issues of the lithium ion battery degradation among the whole life cycle[J]. eTransportation, 2019, 1: 100005.
[14] Deshpande R, Verbrugge M, Cheng Y, et al.Battery cycle life prediction with coupled chemical degradation and fatigue mechanics[J]. Journal of The Electrochemical Society, 2012, 159(10): A1730-A1738.
[15] An S J, Li J L, Daniel C, et al.The state of understanding of the lithium-ion-battery graphite solid electrolyte interphase (SEI) and its relationship to formation cycling[J]. Carbon, 2016, 105: 52-76.
[16] Keil P, Jossen A.Calendar aging of NCA lithium-ion batteries investigated by differential voltage analysis and coulomb tracking[J]. Journal of The Electrochemical Society, 2017, 164(1): A6066-A6074.
[17] Zhu X H, Macía L F, Jaguemont J, Hoog J D, et al.Electrochemical impedance study of commercial LiNi0.80Co0.15-Al0.05O2 electrodes as a function of state of charge and aging[J]. Electrochimica Acta, 2018, 287: 10-20.
[18] Dubarry M, Svoboda V, Hwu R, et al.Incremental capacity analysis and close-to-equilibrium OCV measurements to quantify capacity fade in commercial rechargeable lithium batteries[J]. Electrochemical and Solid-State Letters, 2006, 9(10): A454-A457.
[19] Dubarry M, Truchot C, Liaw B Y, et al.Evaluation of commercial lithium-ion cells based on composite positive Eelectrode for plug-in hybrid electric vehicle applications. part II. Degradation mechanism under 2C cycle aging[J]. Journal of Power Sources, 2011, 196: 10336-10343.
[20] Bloom I, Jansen A N, Abraham D P, et al.Differential voltage analyses of high-power, lithium-ion cells[J]. Journal of Power Sources, 2005, 139: 295-303.
[21] Dubarry M, Truchot C, Liaw B Y.Synthesize battery degradation modes via a diagnostic and prognostic model[J]. Journal of Power Sources, 2012, 219: 204-216.
[22] Ma Z Y(马泽宇), Jiang J C(姜久春), Wang Z G(王占国), et al.A research on SOC estimation for LiFePO4 battery with graphite negative electrode based on incremental capacity analysis[J]. Automotive Engineering(汽车工程), 2014, 36(12): 1439-1444.
[23] Gao Q, Dai H, Wei X, et al.Impedance modeling and aging research of the lithium-ion batteries using the EIS technique[J]. SAE Technical Paper, 2019, 1: 0596.
[24] Itagaki M, Kobari N, Yotsuda S, et al.LiCoO2 electrode/electrolyte interface of Li-ion rechargeable batteries investigated by in situ electrochemical impedance spectroscopy[J]. Journal of Power Sources, 2005, 148: 78-84.
[25] Chen C H, Liu J, Amine K.Symmetric cell approach and impedance spectroscopy of high power lithium-ion batteries[J]. Journal of Power Sources, 2001, 96: 321-328.
[26] Belharouak I.Lithium ion batteries-new developments[M]//Zhuang Q C, Qiu X Y, Xu S D, et al. Diagnosis of electrochemical impedance spectroscopy in lithium-ion batteries. Rijeka: IntechOpen, 2012: 189-226.
[27] Levi M D, Gamolsky K, Aurbach D, et al.On electrochemical impedance measurements of LixCo0.2Ni0.8O2 and LixNiO2 intercalation electrodes[J]. Electrochimica. Acta, 2000, 45: 1781-1789.
[28] Sauer D U, Karden E, Fricke B, et al.Charging performance of automotive batteries-an underestimated factor Influencing lifetime and reliable battery operation[J]. Jour-nal of Power Sources, 2007, 168: 22-30.
[29] Ungurean L, Crstoiu G, Micea M V, et al. Battery state of health estimation: a structured review of models, methods and commercial devices[J]. International Journal of Energy Research, 2017, 41(2): 151-181.
[30] Albertus P, Couts J, Srinivasan V, et al.A combined model for determining capacity usage and battery size for hybrid and plug-in hybrid electric vehicles[J]. Journal of Power Sources, 2008, 183: 771-782.
[31] Wu W X, Wu W, Wang S F.Thermal management optimization of a prismatic battery with shape-stabilized phase change material[J]. International Journal of Heat and Mass Transfer, 2018, 121: 967-977.
[32] Stiaszny B, Ziegler J C, Krauss E E, et al.Electrochemical characterization and post-mortem analysis of aged LiMn2O4-NMC/graphite lithium ion batteries part II: Calendar aging[J]. Journal of Power Sources, 2014, 258: 61-75.
[33] Kumai K, Miyashiro H, Kobayashi Y, et al.Gas generation mechanism due to electrolyte decomposition in commercial lithium-ion cell[J]. Journal of Power Sources, 1999, 81: 715-719.
[34] Wu W X, Wu W, Qiu X H, et al.Low-temperature reversible capacity loss and aging mechanism in lithium-ion batteries for different discharge profiles[J]. International Journal of Energy Research, 2019, 43(1): 243-253.
[35] Dubarry M, Liaw B Y, Chen M S, et al.Identifying battery aging mechanisms in large format Li ion cells[J].Journal of Power Sources, 2011, 196: 3420-3425.
[36] Huang B, Li X H, Wang Z X, et al.Synjournal of Mg-doped LiNi0.8Co0.15Al0.05O2 oxide and its electrochemical behavior in high-voltage lithium-ion batteries[J]. Ceramics International, 2014, 40(8): 13223-13230.
[37] Xie H B, Du K, Hu G R, et al.Synjournal of LiNi0.8Co0.15-Al0.05O2 with 5-sulfosalicylic acid as a chelating agent and its electrochemical properties[J]. Journal of Materials Chemistry A, 2015, 3(40): 20236-20243.
[38] Wu F, Tian J, Su Y F, et al.Effect of Ni2+ content on lithium/nickel disorder for Ni-rich cathode materials[J]. ACS Applied Materials Interfaces, 2015, 7(14): 7702-7708.
[39] Kosova N V, Devyatkina E T, Kaichev V V.Optimization of Ni2+/Ni3+ ratio in layered Li(Ni,Mn,Co)O2 cathodes for better electrochemistry[J]. Journal of Power Sources, 2007, 174: 965-969.
[40] Chen M, Zhang Y G, Xing L D, et al.Morphology-conserved transformations of metal-based precursors to hierarchically porous micro-/nanostructures for electrochemical energy conversion and storage[J]. Advance Materials, 2017, 29(48): 1607015-1607042.
[41] Vetter J, Nov$\acute{a}$k P, Wagner M R, et al.Ageing mechanisms in lithium-ion batteries[J]. Journal of Power Sources, 2005, 147: 269-281.
[42] Xue N(薛楠), Sui B X(孙丙香), Bai K(白恺), et al.Different state of charge range cycle degradation mechanism of composite material lithium-ion batteries based on incremental capacity analysis[J]. Transaction of China Electrotechnical Society(电工技术学报), 2017, 32(13): 145-152.
[43] Pastor-Fern$\acute{a}$ndez C, Widanage W D, Chouchelamane, G H, et al.A SoH diagnosis and prognosis method to identify and quantify degradation modes in Li-ion batteries using the IC/DV technique[J]. 6th Hybrid and Electric Vehicles Conference. 2016.
文章导航

/