欢迎访问《电化学(中英文)》期刊官方网站,今天是
研究论文

经由[Ni(en)3](SeO3)配合物电镀制备的硒化镍高效电催化水分解反应

  • 陈丹丹 ,
  • 高学庆 ,
  • 刘红飞 ,
  • 张 伟 ,
  • 曹 睿
展开
  • 1. 应用表面与胶体化学教育部重点实验室,陕西师范大学化学化工学院,陕西 西安 710119; 2. 中国人民大学化学系,北京 100872

收稿日期: 2019-05-07

  修回日期: 2019-09-29

  网络出版日期: 2019-10-28

Nickel Selenide Derived from [Ni(en)3](SeO3) Complex for Efficient Electrocatalytic Overall Water Splitting

  • CHEN Dan-dan ,
  • GAO Xue-qing ,
  • LIU Hong-fei ,
  • ZHANG Wei ,
  • CAO Rui
Expand
  • 1. Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education and School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710119, China; 2. Department of Chemistry, Renmin University of China, Beijing 100872, China

Received date: 2019-05-07

  Revised date: 2019-09-29

  Online published: 2019-10-28

Supported by

We are grateful for the Starting Research Funds of Shaanxi Normal University, the National Natural Science Foundation of China (Grant Nos. 21503126, 21573139, 21773146 and 21872092).

摘要

电催化水分解是一种高效制备清洁氢气能源的有效方法. 开发高效、稳定、廉价、双功能的电催化剂用于水的氧化与还原反应一直以来都是具有挑战的课题. 在这篇论文中,作者报道了一种生长在碳布上高活性的硒化镍微球. 该催化剂通过对同时包含镍和硒元素的亚硒酸镍配合物进行电解制备. 由于前驱分子同时含有两种有效元素,制备得到的硒化镍具有很好的形貌和元素分步均一性. 制备得到的NiSe-EA/CC电极能够双功能催化水的氧化与还原. 在154 mV析氢过电势下能达到10 mA·cm-2的催化电流. 同时,在250 mV析氧过电势下能达到20 mA·cm-2电催化电流. 用该电极材料同时作为阴极和阳极制备的全电解水电解池能在1.53 V的电压下实现10 mA·cm-2的稳定电解电流.

本文引用格式

陈丹丹 , 高学庆 , 刘红飞 , 张 伟 , 曹 睿 . 经由[Ni(en)3](SeO3)配合物电镀制备的硒化镍高效电催化水分解反应[J]. 电化学, 2019 , 25(5) : 553 -561 . DOI: 10.13208/j.electrochem.181141

Abstract

Electrocatalytic water splitting is considered as a promising technology for renewable energy. The development of efficient, stable, cost-effective, and bifunctional catalysts for both water reduction and oxidation has continued to face significant challenges. Herein, we report a robust and highly active nickel selenide (NiSe) spheres grown on carbon cloth (CC) by electrodeposition from a nickel selenite complex which is a single source containing both Ni and Se. A combination of two chemicals containing, separately, Ni and Se is used in traditional preparations of metal selenides, causing possible problems in the uniformity of the products. The as-prepared NiSe-EA/CC electrode exhibited electrocatalytic activities toward both water reduction and oxidation, with overpotentials of 154 mV at 10 mA·cm-2 and 250 mV at 20 mA·cm-2, respectively. A water electrolysis cell could realize a current density of 10 mA·cm-2 at a cell voltage of 1.53 V with excellent stability, when using NiSe-EA/CC electrode as both the anode and the cathode.

参考文献

[1]  Qi J, Zhang W, Cao R. Solar-to-hydrogen energy conversion based on water splitting[J]. Advanced Energy Materials, 2018, 8(5): 1701620.
[2]  Zhang X Q, Cheng X B, Zhang Q. Nanostructured energy materials for electrochemical energy conversion and storage: A review[J]. Journal of Energy Chemistry, 2016, 25(6): 967-984.
[3]  Dou S, Tao L, Wang R L, et al. Plasma-assisted synthesis and surface modification of electrode materials for renewable energy[J]. Advanced Materials, 2018, 30(21): 1705850.
[4]  Duan X C, Xu J T, Ma J M, et al. Atomically thin transition-metal dichalcogenides for electrocatalysis and energy storage[J]. Small Methods, 2017, 1(11): 1700156.
[5]  Qi J, Zhang W, Cao R. Porous materials as highly efficient electrocatalysts for the oxygen evolution reaction[J]. ChemCatChem, 2018, 10(6): 1206-1220.
[6]  Zhu W X, Yue X Y, Zhang W T, et al. Nickel sulfide microsphere film on Ni foam as an efficient bifunctional electrocatalyst for overall water splitting[J]. Chemical Communications, 2016, 52(7): 1486-1489.
[7]  Li X, Zhang L, Huang M R, et al. Cobalt and nickel selenide nanowalls anchored on graphene as bifunctional electrocatalysts for overall water splitting[J]. Journal of Materials Chemistry A, 2016, 4(38): 14789-14795.
[8]  Hou C C, Cao S, Fu W F, et al. Ultrafine CoP nanoparticles supported on carbon nanotubes as highly active electrocatalyst for both oxygen and hydrogen evolution in basic media[J]. ACS Applied Materials & Interfaces, 2015, 7(51): 28412-28419.
[9]  Liu H F, Gao X Q, Yao X L, et al. Manganese(II) phosphate nanosheet assembly with native out-of-plane Mn centres for electrocatalytic water oxidation[J]. Chemical Science, 2018,10(1): 191-197.
[10]  Wan S, Qi J, Zhang W, et al. Hierarchical Co(OH)F superstructure built by low-dimensional substructures for electrocatalytic water oxidation[J]. Advanced Materials, 2017, 29(28): 1700286.
[11]  Tian J Q, Liu Q, Asiri A M, et al. Self-supported nanoporous cobalt phosphide nanowire arrays: An efficient 3D hydrogen-evolving cathode over the wide range of pH 0-14[J]. Journal of the American Chemical Society, 2014, 136(21): 7587-7590.
[12]  Zhou W J, Wu X J, Cao X H, et al. Ni3S2 nanorods/Ni foam composite electrode with low overpotential for electrocatalytic oxygen evolution[J]. Energy & Environmental Science, 2013, 6(10): 2921-2924.
[13]  Zhang M T, Chen Z, Kang P, et al. Electrocatalytic water oxidation with a copper(II) polypeptide complex[J]. Journal of the American Chemical Society, 2013, 135(6): 2048-2051.
[14]  Wu Y Z, Chen M X, Han Y Z, et al. Fast and simple preparation of iron-based thin films as highly efficient water-oxidation catalysts in neutral aqueous solution[J]. Angewandte Chemie International Edition, 2015, 54(16): 4870-4875.
[15]  Chen M X, Qi J, Zhang W, et al. Electrosynthesis of NiPx nanospheres for electrocatalytic hydrogen evolution from a neutral aqueous solution[J]. Chemical Communications, 2017, 53(40): 5507-5510.
[16]  Gao Z, Qi J, Chen M X, et al. An electrodeposited NiSe for electrocatalytic hydrogen and oxygen evolution reactions in alkaline solution[J]. Electrochimica Acta, 2017, 224: 412-418.
[17]  Hernandez-Pagan E A, Vargas-Barbosa N M, Wang T H, et al. Resistance and polarization losses in aqueous buffer-membrane electrolytes for water-splitting photoelectrochemical cells[J]. Energy & Environmental Science, 2012, 5(6): 7582-7589.
[18]  McCrory C C L, Jung S, Ferrer I M, et al. Benchmarking hydrogen evolving reaction and oxygen evolving reaction electrocatalysts for solar water splitting devices[J]. Journal of the American Chemical Society, 2015, 137(13): 4347-4357.
[19]  Bau J A, Luber E J, Buriak J M. Oxygen evolution catalyzed by nickel-iron oxide nanocrystals with a nonequilibrium phase[J]. ACS Applied Materials & Interfaces, 2015, 7(35): 19755-19763.
[20]  Gao Y G, Li H B, Yang G W. Amorphous nickel hydroxide nanosheets with ultrahigh activity and super-long-term cycle stability as advanced water oxidation catalysts[J]. Crystal Growth & Design, 2015, 15(9): 4475-4483.
[21]  Tang D, Liu J, Wu X Y, et al. Carbon quantum dot/NiFe layered double-hydroxide composite as a highly efficient electrocatalyst for water oxidation[J]. ACS Applied Materials & Interfaces, 2014, 6(10): 7918-7925.
[22]  Wang T x, Li X, Jiang Y M, et al. Reduced graphene oxide-polyimide/carbon nanotube film decorated with NiSe nanoparticles for electrocatalytic hydrogen evolution reactions[J]. Electrochimica Acta, 2017, 243: 291-298.
[23]  Li Y X, Yan D F, Zou Y Q, et al. Rapidly engineering the electronic properties and morphological structure of NiSe nanowires for the oxygen evolution reaction[J]. Journal of Materials Chemistry A, 2017, 5(48): 25494-25500.
[24]  Wang F M, Li Y C, Shifa TA, et al. Selenium-enriched nickel selenide nanosheets as a robust electrocatalyst for hydrogen generation[J]. Angewandte Chemie International Edition, 2016, 55(24): 6919-6924.
[25]  Zhao Q, Zhong D Z, Liu L, et al. Facile fabrication of robust 3D Fe-NiSe nanowires supported on nickel foam as a highly efficient, durable oxygen evolution catalyst[J]. Journal of Materials Chemistry A, 2017, 5(28): 14639-14645.
[26]  Zhang W, Qi J, Liu K Q, et al. A nickel-based integrated electrode from an autologous growth strategy for highly efficient water oxidation[J]. Advanced Energy Materials, 2016, 6(12): 1502489.
[27]  Akbar K, Jeon J H, Kim M, et al. Bifunctional electrodeposited 3D NiCoSe2/nickle foam electrocatalysts for its applications in enhanced oxygen evolution reaction and for hydrazine oxidation[J]. ACS Sustainable Chemistry & Engineering, 2018, 6(6): 7735-7742.
[28]  Swesi A T, Masud J, Nath M. Nickel selenide as a high-efficiency catalyst for oxygen evolution reaction[J]. Energy & Environmental Science, 2016, 9(5): 1771-1782.
[29]  Liu F Y, Wang B, Lai Y Q, et al. Electrodeposition of cobalt selenide thin films[J]. Journal of the Electrochemical Society, 2010, 157(10): D523-D527.
[30]  Xiao P, Chen W, Wang X. A review of phosphide-based materials for electrocatalytic hydrogen evolution[J]. Advanced Energy Materials, 2015, 5(24): 1500985.
[31]  Liu Z J, Zhao Z H, Wang Y Y, et al. In situ exfoliated, edge-rich, oxygen-functionalized graphene from carbon fibers for oxygen electrocatalysis[J]. Advanced Materials, 2017, 29(18): 1606207.
[32]  Mi L W, Sun H, Ding Q, et al. 3D hierarchically patterned tubular NiSe with nano-/microstructures for Li ion battery design[J]. Dalton Transactions, 2012, 41(40): 12595-12600.
[33]  Kukunuri S, Krishnan M R, Sampath S. The effect of structural dimensionality on the electrocatalytic properties of the nickel selenide phase[J]. Physical Chemistry Chemical Physics, 2015, 17(36): 23448-23459.
[34]  Biesinger M C, Payne B P, Lau L W M, et al. X-ray photoelectron spectroscopic chemical state quantification of mixed nickel metal, oxide and hydroxide systems[J]. Surface and Interface Analysis, 2009, 41(4): 324-332.
[35]  Tang C, Cheng N Y, Pu Z H, et al. NiSe nanowire film supported on nickel foam: An efficient and stable 3D bifunctional electrode for full water splitting[J]. Angewandte Chemie International Edition, 2015, 54(32): 9351-9355.
[36]  Frost RL, Keeffe E C. Raman spectroscopic study of the selenite mineral: Ahifeldite, NiSeO3·2H2O[J]. Journal of Raman Spectroscopy, 2009, 40(5): 509-512.
[37]  Zhou X M, Gao P, Sun S C, et al. Amorphous, crystalline and crystalline/amorphous selenium nanowires and their different (de)lithiation mechanisms[J]. Chemistry of Materials, 2015, 27(19): 6730-6736.
[38]  Qi J, Zhang W, Cao R. Aligned cobalt-based Co@CoOx nanostructures for efficient electrocatalytic water oxidation[J]. Chemical Communications, 2017, 53(66): 9277-
9280.
[39]  Song D Y, Wang H Q, Wang X Q, et al. NiSe2 nanoparticles embedded in carbon nanowires as highly efficient and stable electrocatalyst for hydrogen evolution reaction[J]. Electrochimica Acta, 2017, 254: 230-237.
[40]  Louie M W, Bell A T. An investigation of thin-film Ni-Fe oxide catalysts for the electrochemical evolution of oxygen[J]. Journal of the American Chemical Society, 2013, 135(33): 12329-12337.
文章导航

/