欢迎访问《电化学(中英文)》期刊官方网站,今天是
研究论文

暂态电化学表面增强拉曼光谱研究对硝基苯硫酚分子的电化学还原过程

  • 凌 云 ,
  • 汤 儆 ,
  • 刘国坤 ,
  • 宗 铖
展开
  • 1. 福建省现代分离分析科学与技术重点实验室,污染监测与控制省高校重点实验室,闽南师范大学化学化工与环境学院,福建 漳州 363000;2. 食品安全与生物分析教育部重点实验室,福州大学化学学院,福建 福州 350116;3. 近海海洋环境科学国家重点实验室,厦门大学环境与生态学院,福建 厦门 361102; 4. 固体表面物理化学国家重点实验室,厦门大学化学化工学院,福建 厦门 361005

收稿日期: 2019-07-09

  修回日期: 2019-09-18

  网络出版日期: 2019-12-28

基金资助

国家自然科学基金项目(No. 21573043, No. 21473140)、福建省自然科学基金面上项目(No. 2019J01746)以及食品安全与生物分析教育部重点实验室开放基金(No. FS18019)资助

Transient Electrochemical Surface-Enhanced Raman Spectroscopic Study in Electrochemical Reduction of P-Nitrothiophenol

  • LING Yun ,
  • TANG Jing ,
  • LIU Guo-kun ,
  • ZONG Cheng
Expand
  • 1. Fujian Provincial Key Laboratory of Modern Analytical Science and Separation Technology, Fujian Provincial Key Laboratory of Pollution Monitoring and Control, College of Chemistry, Chemical Engineering and Environment, Minnan Normal University, Zhangzhou, 363000, Fujian, China; 2. Key laboratory for analytical science of food safety and biology, Ministry of Education, College of Chemistry, Fuzhou University, Fuzhou 350116, Fujian, China; 3. State Key Laboratory of Marine Environmental Science, College of the Environment and Ecology, Xiamen University, Xiamen 361102, Fujian, China; 4. State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry,College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, Fujian, China

Received date: 2019-07-09

  Revised date: 2019-09-18

  Online published: 2019-12-28

摘要

对硝基苯硫酚是表面增强拉曼光谱研究中最常用的探针分子之一,对硝基苯硫酚在电极表面电化学还原反应的研究有助于对芳香族硝基化合物还原机理的认识. 本文应用暂态电化学-表面增强拉曼光谱技术,研究了对硝基苯硫酚在循环伏安和计时电流法过程中的表面增强拉曼光谱. 结果表明,实验实现了完全与电化学检测时间分辨率同步的表面增强拉曼光谱检测,以最快5毫秒的时间分辨率研究了对硝基苯硫酚分子在金电极表面的还原过程. 结果分析推测其此反应过程极快,在5毫秒的时间分辨率下仍难以捕获其中间物种. 本研究为人们更深层次研究和认识硝基苯类化合物电化学还原过程提供了参考和方向.

本文引用格式

凌 云 , 汤 儆 , 刘国坤 , 宗 铖 . 暂态电化学表面增强拉曼光谱研究对硝基苯硫酚分子的电化学还原过程[J]. 电化学, 2019 , 25(6) : 731 -739 . DOI: 10.13208/j.electrochem.190709

Abstract

P-nitrothiophenol (PNTP) is one of the most common probe molecules studied by surface-enhanced Raman spectroscopy (SERS). The research in electrochemical reduction behavior of PNTP will help understanding the mechanism for the nitrobenzene reduction. In this paper, we used transient electrochemical surface-enhanced Raman spectroscopy (TEC-SERS) to study the SERS of PNTP with cyclic voltammetry and chronoamperometry on gold electrodes. The results show that the TEC-SERS provide a time resolution that equals the transient electrochemical methods, and we concluded that the reaction was so quick that we did not observe the spectral information of intermediate species described in the literatures with a 5-ms temporal resolution. Such studies will assist a deep understanding in the electrochemical reduction of nitrobenzene.

参考文献

[1]  Blaser, Hans U. A golden boost to an old reaction[J]. Science, 2006, 313(5785): 312-313.
[2]  Corma A, Concepcion P, Serna P. A different reaction pathway for the reduction of aromatic nitro compounds on gold catalysts[J]. Angewandte Chemie International Edition, 2007, 46(38): 7266-7269.
[3]  Corma A, Serna P. Chemoselective hydrogenation of nitro compounds with supported gold catalysts[J]. Science, 2006, 313(5785): 332-334.
[4]  Gao P, Gosztola D, Weaver M J. Surface-enhanced raman-spectroscopy as a probe of electroorganic reaction pathways.1.processes involving adsorbed nitrobenzene, azoben-
zene, and related species[J]. Journal of Physical Chemistry, 1988, 92(25): 7122-7130.
[5]  Shi C T, Wei Z, Birke R L, et al. Detection of short-lived intermediates in electrochemical reactions using time-resolved surface-enhanced Raman-spectroscopy[J]. Journal of Physical Chemistry, 1990, 94(12): 4766-4769.
[6]  Shi C T, Zhang W, Birke R L, et al. Time-resolved SERS, cyclic voltammetry, and digital-simulation of the electroreduction of para-nitrobenzoic acid[J]. Journal of Physical Chemistry, 1991, 95(16): 6276-6285.
[7]  Sun S C, Birke R L, Lombardi J R, et al. Photolysis of para-nitrobenzoic acid on roughened silver surfaces[J].Journal of Physical Chemistry, 1988, 92(21): 5965-5972.
[8]  Haber F. About gradual reduction of the nitrobenzene with limited cathode potential. Z[J]. Elecktrochem, 1898, 4: 506-513.
[9]  Haber F, Schmidt C. On the reduction procedure in the electrical reduction of nitrobenzol[J]. Zeitschrift fur phy-sikalische chemie--stochiometrie und verwandtschaftslehre, 1900, 32(2): 271-287.
[10]  Zhao L B, Chen J L, Zhang M, et al. Theoretical study on electroreduction of p-nitrothiophenol on silver and gold electrode surfaces[J]. Journal of Physical Chemistry C, 2015, 119(9): 4949-4958.
[11]  Medard C, Morin M. Chemisorption of aromatic thiols onto a glassy carbon surface[J]. Journal of Electroanalytical Chemistry, 2009, 632(1/2): 120-126.
[12]  Nielsen J U, Esplandiu M J, Kolb D M. 4-nitrothiophenol SAM on Au(111) investigated by in situ STM, electrochemistry, and XPS[J]. Langmuir, 2001, 17(11): 3454-3459.
[13]  Tsutsumi H, Furumoto S, Morita M, et al. Electrochemical-behavior of a 4-nitrothiophenol modified electrode prepared by the self-assembly method[J]. Journal of Colloid and Interface Science, 1995, 171(2): 505-511.
[14]  Futamata M. Application of attenuated total reflection surface-plasmon-polariton Raman spectroscopy to gold and copper[J]. Applied Optics, 1997, 36(1): 364-375.
[15]  Futamata M. Surface-plasmon-polariton-enhanced raman-
scattering from self-assembled monolayers of p-nitrothiophenol and p-aminothiophenol on silver[J]. Journal of Physical Chemistry, 1995, 99(31): 11901-11908.
[16]  Matsuda N, Sawaguchi T, Osawa M, et al. Surface-assisted photoinduced reduction of p-nitrothiophenol self-assembled monolayer adsorbed on a smooth silver electrode[J]. Chemistry Letters, 1995, 24(2): 145-146.
[17]  Matsuda N, Yoshii K, Ataka K, et al. Surface-enhanced infrared and raman studies of electrochemical reduction of self-assembled monolayers formed from para-nitrohiophenol at silver[J]. Chemistry Letters, 1992, 21(7): 1385-1388.
[18]  Kim K, Lee S J, Kim K L. Surface-enhanced Raman scattering of 4-nitrothioanisole in Ag sol[J]. Journal of Physical Chemistry B, 2004, 108(41): 16208-16212.
[19]  Zhu T, Yu H Z, Wang Y C, et al. Irreversible adsorption and reduction of p-nitrothio-phenol monolayers on gold: Electrochemical in situ surface enhanced Raman spectroscopy[J]. Molecular Crystals and Liquid Crystals Science and Technology Section A - Molecular Crystals and Liquid Crystals, 1999, 337(1): 241-244.
[20]  Futamata M, Nishihara C, Goutev N. Electrochemical reduction of p-nitrothiophenol-self-assembled monolayer films on Au(111) surface and coadsorption of anions and water molecules[J]. Surface Science, 2002, 514(1/3): 241-248.
[21]  Zong C, Chen C J, Zhang M, et al. Transient electrochemical surface-enhanced raman spectroscopy: A millisecond time-resolved study of an electrochemical redox process[J]. Journal of the American Chemical Society, 2015, 137(36): 11768-11774.
[22]  Hartman T, Wondergem C S, Kumar N, et al. Surface- and tip-enhanced raman spectroscopy in catalysis[J]. Journal of Physical Chemistry Letters, 2016, 7(8): 1570-1584.
[23]  Lin T W, Tasi T T, Chang P L, et al. Reversible association of nitro compounds with p-nitrothiophenol modified on Ag nanoparticles/graphene oxide nanocomposites through plasmon mediated photochemical reaction[J]. ACS Applied Materials & Interfaces, 2016, 8(12): 8315-8322.
[24]  Kang L L, Han X J, Chu J Y, et al. In situ surface-enhanced raman spectroscopy study of plasmon-driven catalytic reactions of 4-nitrothiophenol under a controlled atmosphere[J]. ChemCatChem, 2015, 7(6): 1004-1010.
[25]  Kang L, Xu P, Zhang B, et al. Laser wavelength- and power-dependent plasmon-driven chemical reactions monitored using single particle surface enhanced Raman spectroscopy[J]. Chemical Communications, 2013, 49(33): 3389-3391.
[26]  Ling Y, Xie W C, Liu G K, et al. The discovery of the hydrogen bond from p-nitrothiophenol by Raman spectroscopy: Guideline for the thioalcohol molecule recognition tool[J]. Scientific Reports, 2016, 6: 31981.
[27]  Ling Y, Xie W C, Wang W L, et al. Direct observation of 4-nitrophenyl disulfide produced from p-nitrothiophenol in air by Raman spectroscopy[J]. Journal of Raman Spectroscopy, 2018, 49(3): 520-525.
[28]  Wu Y F(吴元菲), Pang R(庞然), Zhang M(张檬), et al. Theoretical study of photoelectrochemical reactions and EC-SERS on SPR metallic electrodes of silver and gold[J]. Journal of Electrochemistry(电化学), 2016, 22(4): 356-367.
[29]  Zhao L B, Zhang M, Huang Y F, et al. Theoretical study of plasmon-enhanced surface catalytic coupling reactions of aromatic amines and nitro compounds[J]. Journal of Physical Chemistry Letters, 2014, 5(7): 1259-1266.
[30]  Zhang Z L, Deckert-Gaudig T, Singh P, et al. Single molecule level plasmonic catalysis - a dilution study of p-nitrothiophenol on gold dimers[J]. Chemical Communications, 2015, 51(15): 3069-3072.

文章导航

/