欢迎访问《电化学(中英文)》期刊官方网站,今天是
研究论文

Pt-WO3纳米片的合成及其电催化析氢性能研究

  • 蒋鹏杰 ,
  • 吕 燚 ,
  • 陈昌淼 ,
  • 何宏程 ,
  • 蔡 勇 ,
  • 张 明
展开
  • 湖南大学物理与微电子科学学院, 微纳光电器件及应用教育部重点实验室, 材料科学与工程学院, 湖南 长沙 410082

收稿日期: 2018-11-12

  修回日期: 2018-12-18

  网络出版日期: 2019-03-01

A Facile Route to Synthesize Pt-WO3 Nanosheets with Enhanced Electrochemical Performance for HER

  • JIANG Peng-jie ,
  • LV Yi ,
  • CHEN Chang-miao ,
  • HE Hong-cheng ,
  • CAI Yong ,
  • ZHANG Ming
Expand
  • School of Physics and Electronics, College of Materials Science and Engineering, Key Laboratory for Micro-Nano Optoelectronic Devices of Ministry of Education, Hunan University, Changsha 410082, China

Received date: 2018-11-12

  Revised date: 2018-12-18

  Online published: 2019-03-01

Supported by

This work is supported by National Natural Science Foundation of China (51772082, 51574117, and 51804106) and China Postdoctoral Science Foundation (2017M6140495, 2018T10822).

摘要

作者通过一个简便的方法在泡沫镍表面修饰了Pt-WO3纳米片. 作为连续导电网络, 泡沫镍基地可提高WO3电极的性能. 表面修饰的铂纳米颗粒不仅可以提高表面电导率, 也可提高其催化位点密度. 测试结果表明Pt-WO3修饰的泡沫镍显示出比未进行铂修饰催化剂更高的性能,其Tafel斜率为80 mV·dec-1, 电流密度为10 mA·cm-2时过电位仅为72 mV. 另外, Pt-WO3修饰的泡沫镍催化剂经45小时连续测试展现出优异的稳定性和长寿命. 本文研究提供了一种提高过渡金属氧化物作为析氢催化剂性能的潜在方法, 为其实际应用奠定基础.

本文引用格式

蒋鹏杰 , 吕 燚 , 陈昌淼 , 何宏程 , 蔡 勇 , 张 明 . Pt-WO3纳米片的合成及其电催化析氢性能研究[J]. 电化学, 2019 , 25(5) : 562 -570 . DOI: 10.13208/j.electrochem.181143

Abstract

Platinum-tungsten trioxide (Pt-WO3) nanosheets were synthesized on nickel foams (NFs) directly. As great conductive networks, NFs substrates could greatly improve the electrode performance of WO3. The modified platinum nanoparticles not only enhanced the electron transformation of catalysts, but also increased the active sites for hydrogen evolution reaction (HER). Pt-WO3/NF revealed a better catalytic activity than WO3/NFs with a smaller Tafel slope (80 mV·dec-1) and a lower overpotential of 72 mV at the current density of 10 mA·cm-2. In addition, Pt-WO3/NF showed great durability and stability during the long-term electrochemical test of 45 h. This work provides a facile strategy of improving transition metal oxides (TMOs) as high activity HER catalysts for promising practical applications.

参考文献

[1]  Zhang Y, Ouyang B, Xu J, et al. 3D porous hierarchical nickel-molybdenum nitrides synthesized by RF plasma as highly active and stable hydrogen-evolution-reaction electrocatalysts[J]. Advanced Energy Materials, 2016, 6(11): 1600221.
[2]  Zhang H, Ma Z, Duan J, et al. Active sites implanted carbon cages in core-shell architecture: highly active and durable electrocatalyst for hydrogen evolution reaction[J]. ACS Nano, 2016, 10(1): 684-694.
[3]  Li Y(李阳), Luo Z Y(罗兆艳), Ge J J(葛君杰), et al. Research progress in hydrogen evolution low noble/non-precious metal catalysts of water electrolysis[J]. Journal of Electrochemistry(电化学), 2018, 24(6): 572-588.
[4]  Durst J, Siebel A, Simon C, et al. New insights into the electrochemical hydrogen oxidation and evolution reaction mechanism[J]. Energy & Environmental Science, 2014, 7(7): 2255-2260.
[5]  Georgakilas V, Perman J A, Tucek J, et al. Broad family of carbon nanoallotropes: classification, chemistry, and applications of fullerenes, carbon dots, nanotubes, graphene, nanodiamonds, and combined superstructures[J]. Chemical Reviews, 2015, 115(11): 4744-4822.
[6]  Tiwari J N, Sultan S, Myung C W, et al. Multicomponent electrocatalyst with ultralow Pt loading and high hydrogen evolution activity[J]. Nature Energy, 2018, 3(9): 773-782.
[7]  Wang J, Xu F, Jin H, et al. Non-noble metal-based carbon composites in hydrogen evolution reaction: fundamentals to applications[J]. Advanced Materials, 2017, 29(14): 1605838.
[8]  Tang C, Zhang R, Lu W B, et al. Fe-doped CoP nanoarray: a monolithic multifunctional catalyst for highly efficient hydrogen generation[J]. Advanced Materials, 2017, 29(2): 1602441.
[9]  Qu Y, Medina H, Wang S W, et al. Wafer scale phase-engineered 1T-and 2H-MoSe2/Mo core-shell 3D-hierarchical nanostructures toward efficient electrocatalytic hydrogen evolution reaction[J]. Advanced Materials, 2016, 28(44): 9831-9838.
[10]  Qu K, Zheng Y, Zhang X, et al. Promotion of electrocatalytic hydrogen evolution reaction on nitrogen-doped carbon nanosheets with secondary heteroatoms[J]. ACS Nano, 2017, 11(7): 7293-7300.
[11]  Gao Y(高雨), Zhou J(周娟), Liu Y W(刘欲文), et al. Hydrogen evolution properties on individual MoS2 nanosheets[J]. Journal of Electrochemistry(电化学), 2016, 22(6): 590-595.
[12]  Hu Y S, Kleiman-Shwarsctein A, Forman A J, et al. Pt-doped α-Fe2O3 thin films active for photoelectrochemical water splitting[J]. Chemistry of Materials, 2008, 20(12): 3803-3805.
[13]  Lian Z, Wang W, Li G, et al. Pt-enhanced mesoporous Ti3+/TiO2 with rapid bulk to surface electron transfer for photocatalytic hydrogen evolution[J]. ACS Applied Materials & Interfaces, 2017, 9(20): 16959-16966.
[14]  Antony R P, Mathews T, Ramesh C, et al. Efficient photocatalytic hydrogen generation by Pt modified TiO2 nanotubes fabricated by rapid breakdown anodization[J]. International Journal of Hydrogen Energy, 2012, 37(10): 8268-8276.
[15]  Wang H, Lee H W, Deng Y, et al. Bifunctional non-noble metal oxide nanoparticle electrocatalysts through lithium-induced conversion for overall water splitting[J]. Nature communications, 2015, 6: 7261.
[16]  Wu R, Zhang J F, Shi Y M, et al. Metallic WO2-carbon mesoporous nanowires as highly efficient electrocatalysts for hydrogen evolution reaction[J]. Journal of the American Chemical Society, 2015, 137(22): 6983-6986.
[17]  Luo Z, Miao R, Huan T D, et al. Mesoporous MoO3-x material as an efficient electrocatalyst for hydrogen evolution reactions[J]. Advanced Energy Materials, 2016, 6(16): 1600528.
[18]  Zhang T, Wu M Y, Yan D Y, et al. Engineering oxygen vacancy on NiO nanorod arrays for alkaline hydrogen evolution[J]. Nano Energy, 2018, 43: 103-109.
[19]  Liu C H, Qiu Y Y, Xia Y J, et al. Noble-metal-free tungsten oxide/carbon (WOx/C) hybrid manowires for highly efficient hydrogen evolution[J]. Nanotechnology, 2017, 28(44): 445403.
[20]  Sun Y F, Gao S, Lei F C, et al. Atomically-thin two-dimensional sheets for understanding active sites in catalysis[J]. Chemical Society Reviews, 2015, 44(3): 623-636.
[21]  Nong S Y, Dong W J, Yin J W, et al. Well-dispersed ruthenium in mesoporous crystal TiO2 as an advanced electrocatalyst for hydrogen evolution reaction[J]. Journal of the American Chemical Society, 2018, 140(17): 5719-5727.
[22]  Yan J Q, Wang T, Wu G J, et al. Tungsten oxide single crystal nanosheets for enhanced multichannel solar light harvesting[J]. Advanced Materials, 2015, 27(9): 1580-1586.
[23]  Zhao Y M, Hu W B, Xia Y D, et al. Preparation and characterization of tungsten oxynitride nanowires[J]. Journal of Materials Chemistry, 2007, 17(41): 4436-4440.
[24]  Yang P P(杨翩翩), Huang L Z(黄丽珍), Li Y Y(李影影), et al. Preparation and electrocatalytic activity of nitrogen-doping tungsten carbide catalyst[J]. Journal of Electrochemistry(电化学), 2018, 24(1): 63-71.
[25]  Nefedov V I, Salyn Y V, Leonhardt G, et al. A comparison of different spectrometers and charge corrections used in X-ray photoelectron spectroscopy[J]. Journal of Electron Spectroscopy and Related Phenomena, 1977, 10(2): 121-124.
[26]  Kerkhof F, Moulijn J, Heeres A. The XPS spectra of the metathesis catalyst tungsten oxide on silica gel[J]. Journal of Electron Spectroscopy and Related Phenomena, 1978, 14(6): 453-466.
[27]  Contour J, Mouvier G, Hoogewys M, et al. X-ray photoelectron spectroscopy and electron microscopy of Pt Rh gauzes used for catalytic oxidation of ammonia[J]. Journal of catalysis, 1977, 48(1/3): 217-228.
[28]  Kim K, Winograd N. X-ray photoelectron spectroscopic studies of nickel-oxygen surfaces using oxygen and argon ion-bombardment[J]. Surface Science, 1974, 43(2): 625-643.
[29]  Venezia A, Bertoncello R, Deganello G. X-ray photoelectron spectroscopy investigation of pumice-supported nickel catalysts[J]. Surface and Interface Analysis, 1995, 23(4): 239-247.
[30]  Duckers K, Bonzel H P, Wesner D A. Surface core level shifts of Pt(111) measured with Y Mzeta radiation (132.3 eV)[J]. Surface Science, 1986, 166(1): 141-158.
[31]  Duckers K, Bonzel H P. Core and valence level spectroscopy with YMzeta radiation: CO and K on (110) surfaces of Ir, Pt and Au[J]. Surface Science, 1989, 213(1): 25-48.
[32]  McEnaney J M, Crompton J C, Callejas J F, et al. Electrocatalytic hydrogen evolution using amorphous tungsten phosphide nanoparticles[J]. Chemical Communications, 2014, 50(75): 11026-11028.
[33]  Pu Z, Liu Q, Asiri A M, et al. Tungsten phosphide nano-rod arrays directly grown on carbon cloth: a highly efficient and stable hydrogen evolution cathode at all pH values[J]. ACS Applied Materials & Interfaces, 2014, 6(24): 21874-21879.
[34]  Velazquez J M, Saadi F H, Pieterick A P, et al. Synthesis and hydrogen-evolution activity of tungsten selenide thin films deposited on tungsten foils[J]. Journal of Electroanalytical Chemistry, 2014, 716: 45-48.
[35]  Garcia-Esparza A T, Cha D, Ou Y, et al. Tungsten carbide nanoparticles as efficient cocatalysts for photocatalytic overall water splitting[J]. ChemSusChem, 2013, 6(1): 168-181.
[36]  Pu Z, Liu Q, Asiri A M, et al. One-step electrodeposition fabrication of graphene film-confined WS2 nanoparticles with enhanced electrochemical catalytic activity for hydrogen evolution[J]. Electrochimica Acta, 2014, 134: 8-12.
[37]  Lv Y, Chen Z, Liu Y K, et al. Oxygen vacancy improves the hydrogen evolution reaction property of WO3-x nano-sheets[J]. Nano-Structures & Nano-Objects, 2018, 15: 114-118.
[38]  Yan H J, Tian C G, Wang L, et al. Phosphorus-modified tungsten nitride/reduced graphene oxide as a high-performance, non-noble-metal electrocatalyst for the hydrogen evolution reaction[J]. Angewandte Chemie International Edition, 2015, 54(21): 6325-6329.
[39]  Xu Y T, Xiao X, Ye Z M, et al. Cage-confinement pyrolysis route to ultrasmall tungsten carbide nanoparticles for efficient electrocatalytic hydrogen evolution[J]. Journal of the American Chemical Society, 2017, 139(15): 5285-5288.

文章导航

/