欢迎访问《电化学(中英文)》期刊官方网站,今天是
综述

铂基氧还原催化剂在活性和稳定性方面的挑战

  • 赵拓 ,
  • 罗二桂 ,
  • 王显 ,
  • 葛君杰 ,
  • 刘长鹏 ,
  • 邢巍
展开
  • 1. 中国科学技术大学应用化学与工程学院,安徽 合肥 230026
    2. 中国科学院长春应用化学研究所,先进化学电源实验室,电分析化学国家重点实验室,吉林 长春 130022
* Tel:(86-431)85262225, E-mail: gejj@ciac.ac.cn;
Tel: (86-431)85262225, E-mail: liuchp@ciac.ac.cn;
Tel: (86-431)85262225, Email: xingwei@ciac.ac.cn

收稿日期: 2018-12-05

  修回日期: 2019-01-21

  网络出版日期: 2020-02-28

基金资助

国家重点研发计划项目(2017YFB0102900);国家自然科学基金(21633008);国家自然科学基金(21875243);国家自然科学基金(21433003);中国科学院战略重点研究先导项目(XDA09030104);俄罗斯基础研究基金会(18-53-53025);俄罗斯基础研究基金会(Fateev Vladimir);吉林省科技发展项目(20170520150JH);吉林省科技发展项目(20170203003SF);吉林省科技发展项目(20180101030JC)

版权

《电化学》编辑部, 2020, 版权所有,未经授权,不得转载、摘编本刊文章,不得使用本刊的版式设计。

Challenges in the Activity and Stability of Pt-Based Catalysts toward ORR

  • Tuo ZHAO ,
  • Er-gui LUO ,
  • Xian WANG ,
  • Jun-jie GE ,
  • Chang-peng LIU ,
  • Wei XING
Expand
  • 1. School of Applied Chemistry and Engineering University of Science and Technology of China,Hefei 230026, Anhui ,China
    2. State Key Laboratory of Electroanalytica Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences University of Chinese Academy of Sciences, Changchun 130022, Jilin, China

Received date: 2018-12-05

  Revised date: 2019-01-21

  Online published: 2020-02-28

Copyright

, 2020, Copyright reserved © 2020

摘要

在质子交换膜燃料电池(PEMFC)中,由于阴极氧还原反应(ORR)速率缓慢,因此开发高效的ORR催化剂是实现燃料电池商业化的关键. 世界各地的研究人员在提高催化剂活性和耐久性方面做出了不懈的努力. 目前,铂基催化剂仍然是商业应用上的首选,为开发实用的低铂氧还原催化剂,研究人员开展了大量的研究. 本文说明了ORR反应遇到的挑战,并介绍了近年来铂基氧还原催化剂的研究进展,具体包括ORR机理、铂核壳结构、一维纳米Pt催化剂和其他的代表性工作.

本文引用格式

赵拓 , 罗二桂 , 王显 , 葛君杰 , 刘长鹏 , 邢巍 . 铂基氧还原催化剂在活性和稳定性方面的挑战[J]. 电化学, 2020 , 26(1) : 84 -95 . DOI: 10.13208/j.electrochem.181205

Abstract

The development of highly efficient oxygen reduction reaction (ORR) catalysts is the key to the commercialization of fuel cells, where the sluggish ORR reaction rate needs to be overcome by adjusting the intermediates adsorption energies on the catalytic surfaces. To-date, platinum (Pt)-based materials are the-state-of-the-art catalysts in terms of both activity and stability in ORR, making them the preferred choice for commercial applications. However, the high cost of Pt-based catalysts limits their widespread use, leading to massive effects paid in reducing Pt loading, improving catalyst activity and stability. This article illustrates the challenges in the ORR reaction and introduces the recent research progresses in Pt-based oxygen reduction catalysts including the ORR mechanism, core-shell structures, one-dimensional nanostructure, and other representative works of Pt-based catalysts. Some perspectives in the future development trend of Pt-based catalysts are given at the end of the paper, hoping to provide readers with some ideological inspiration.

参考文献

[1] Kibsgaard J, Gorlin Y, Chen Z B , et al. Meso-structured platinum thin films: active and stable electrocatalysts for the oxygen reduction reaction[J]. Journal of the American Chemical Society, 2012,134(18):7758-7765.
[2] Zhang B W( 张斌伟), Wang Y X( 王云晓), Xu Y F( 徐燕裴 ), et al. Designing Pt-skin of Pt-based bimetallic electrocatalysts for oxygen reduction reaction[J]. Journal of Electrochemistry( 电化学), 2017,23(2):102-109.
[3] Ma T Y, Zheng Y, Dai S , et al. Mesoporous MnCo2O4 with abundant oxygen vacancy defects as high-performance oxygen reduction catalysts[J]. Journal of Materials Chemistry A, 2014,2(23):8676-8682.
[4] Norskov J K, Rossmeisl J, Logadottir A , et al. Origin of the overpotential for oxygen reduction at a fuel-cell cathode[J]. Journal of Physical Chemistry B, 2004,108(46):17886-17892.
[5] Wu G, More K L, Johnston C M , et al. High-performance electrocatalysts for oxygen reduction derived from polyaniline, iron, and cobalt[J]. Science, 2011,332(6028):443-447.
[6] Kongkanand A, Mathias M F . The priority and challenge of high-power performance of low-platinum proton-exchange membrane fuel cells[J]. Journal of Physical Chemistry Letters, 2016,7(7):1127-1137.
[7] Eslamibidgoli M J, Huang J, Kadyk T , et al. How theory and simulation can drive fuel cell electrocatalysis[J]. Nano Energy, 2016,29:334-361.
[8] Schmidt T J, Paulus U A, Gasteiger H A , et al. The oxygen reduction reaction on a Pt/carbon fuel cell catalyst in the presence of chloride anions[J]. Journal of Electroanalytical Chemistry, 2001,508(1/2):41-47.
[9] Hansen H A, Viswanathan V, Norskov J K . Unifying kinetic and thermodynamic analysis of 2 e- and 4 e- reduction of oxygen on metal surfaces [J]. Journal of Physical Chemistry C, 2014,118(13):6706-6718.
[10] Holton O T, Stevenson J W . The role of platinum in proton exchange membrane fuel cells evaluation of platinum’s unique properties for use in both the anode and cathode of a proton exchange membrane fuel cell[J]. Platinum Metals Review, 2013,57(4):259-271.
[11] Knozinge H, Kochloef K, Buhl H . Dehydration of alcohols on alumina reactivity and mechanism[J]. Journal of Catalysis, 1972,24:57-116.
[12] Cheng J, Hu P . Utilization of the three-dimensional volcano surface to understand the chemistry of multiphase systems in heterogeneous catalysis[J]. Journal of the American Chemical Society, 2008,130(33):10868-10869.
[13] Bligaard T, Norskov J K, Dahl S , et al. The bronsted-evans-polanyi relation and the volcano curve in heterogeneous catalysis[J]. Journal of Catalysis, 2004,224(1):206-217.
[14] Campbell C T . Bimetallic surface chemistry[J]. Annual Review of Physical Chemistry, 1990,41:775-837.
[15] Rodriguez J . Physical and chemical properties of bimetallic surfaces[J]. Surface Science Reports, 1996,24(7/8):223-287.
[16] Schalow T, Brandt B, Starr D E , et al. Size-dependent oxidation mechanism of supported Pd nanoparticles[J]. Angewandte Chemie International Edition, 2006,45(22):3693-3697.
[17] Wieckowski A, Savinova E R, Vayenas C G. Catalysis and electrocatalysis at nanoparticle surfaces[M]. CRC Press: 2003.
[18] Horsley J . A molecular orbital study of strong metal-support interaction between platinum and titanium dioxide[J]. Journal of the American Chemical Society, 1979,101(11):2870-2874.
[19] Kitchin J R, Norskov J K, Barteau M A , et al. Role of strain and ligand effects in the modification of the electronic and chemical properties of bimetallic surfaces[J]. Physical Review Letters, 2004,93(15):156801.
[20] Bligaard T, Norskov J K . Ligand effects in heterogeneous catalysis and electrochemistry[J]. Electrochim Acta, 2007,52(18):5512-5516.
[21] Wu J B, Qi L, You H J , et al. Icosahedral platinum alloy nanocrystals with enhanced electrocatalytic activities[J]. Journal of the American Chemical Society, 2012,134(29):11880-11883.
[22] Stamenkovic V, Mun B S, Mayrhofer K J , et al. Changing the activity of electrocatalysts for oxygen reduction by tuning the surface electronic structure[J]. Angewandte Chemie International Edition, 45(1):2897-2901.
[23] Tripkovic V, Skulason E, Siahrostami S , et al. The oxygen reduction reaction mechanism on Pt(111) from density functional theory calculations[J]. Electrochimica Acta, 2010,55(27):7975-7981.
[24] Stamenkovic V R, Mun B S, Arenz M , et al. Trends in electrocatalysis on extended and nanoscale Pt-bimetallic alloy surfaces[J]. Nature Materials, 2007,6(3):241-247.
[25] Oezaslan M, Heggen M, Strasser P . Size-dependent morphology of dealloyed bimetallic catalysts: Linking the nano to the macro scale[J]. Journal of the American Chemical Society, 2012,134(1):514-524.
[26] Ou L H( 欧利辉), Cheng S L( 陈胜利 ). A DFT calculation screening of Pt-based bimetallic catalysts for oxygen reduction[J]. Journal of Electrochemistry( 电化学), 2013,19(1):1-5.
[27] Chen S, Ferreira P J, Sheng W , et al. Enhanced activity for oxygen reduction reaction on “Pt3CO” nanoparticles: Direct evidence of percolated and sandwich-segregation structures[J]. Journal of the American Chemical Society, 2008,130(42):13818-13819.
[28] Yu Z Q, Zhang J L, Liu Z Y , et al. Comparison between dealloyed PtCo3 and PtCu3 cathode catalysts for proton exchange membrane fuel cells[J]. Journal of Physical Chemistry C, 2012,116(37):19877-19885.
[29] Dutta I, Carpenter M K, Balogh M P , et al. Electrochemical and structural study of a chemically dealloyed PtCu oxygen reduction catalyst[J]. Journal of Physical Chemistry C, 2010,114(39):16309-16320.
[30] Wang R Y, Xu C X, Bi X X , et al. Nanoporous surface alloys as highly active and durable oxygen reduction reaction electrocatalysts[J]. Energy & Environmental Science, 2012,5(1):5281-5286.
[31] Shui J I, Chen C, Li J C M . Evolution of nanoporous Pt-Fe alloy nanowires by dealloying and their catalytic property for oxygen reduction reaction[J]. Advanced Functional Materials, 2011,21(17):3357-3362.
[32] Wang D S, Zhao P, Li Y D . General preparation for Ptbased alloy nanoporous nanoparticles as potential nanocatalysts[J]. Scientific Reports, 2011, 1: 37:
[33] Xiong Y L, Shan H, Zhou Z N , et al. Tuning surface structure and strain in Pd-Pt core-shell nanocrystals for enhanced electrocatalytic oxygen reduction[J]. Small, 2017,13(7):1603423.
[34] Chen Y F, Fu G T, Li Y Y , et al. L-Glutamic acid derived PtPd@Pt core/satellite nanoassemblies as an effectively cathodic electrocatalyst[J]. Journal of Materials Chemistry A, 2017,5(8):3774-3779.
[35] Sasaki K, Naohara H, Cai Y , et al. Core-protected platinum monolayer shell high-stability electrocatalysts for fuel-cell cathodes[J]. Angewandte Chemie International Edition, 2010,49(46):8602-8607.
[36] Wang C, Chi M F, Li D G , et al. Design and synjournal of bimetallic electrocatalyst with multilayered Pt-skin surfaces[J]. Journal of the American Chemical Society, 2011,133(36):14396-14403.
[37] Lee K S, Park H Y, Ham H C , et al. Reversible surface segregation of Pt in a Pt3Au/C catalyst and its effect on the oxygen reduction reaction[J]. Journal of Physical Chemistry C, 2013,117(18):9164-9170.
[38] Li J, Yin H M, Li X B , et al. Surface evolution of a Pt-Pd-Au electrocatalyst for stable oxygen reduction[J]. Nature Energy, 2017,2(8):17111.
[39] Khateeb S, Guerreo S, Su D , et al. Fuel cell performance of palladium-platinum core-shell electrocatalysts Synthesized in gram-scale batches[J]. Journal of The Electrochemial Society, 2016,163(7):F708-F713.
[40] Li J R, Xi Z, Pan Y T , et al. Fe stabilization by intermetallic L10-FePt and Pt catalysis enhancement in L10-FePt/Pt nanoparticles for efficient oxygen reduction reaction in fuel cells[J]. Journal of the American Chemical Society, 2018,140(8):2926-2932.
[41] Bu L Z, Zhang N, Guo S J , et al. Biaxially strained PtPb/Pt core/shell nanoplate boosts oxygen reduction catalysis[J]. Science, 2016,354(6318):1410-1414.
[42] Koh S, Strasser P . Electrocatalysis on bimetallic surfaces: Modifying catalytic reactivity for oxygen reduction by voltammetric surface dealloying[J]. Journal of the American Chemical Society, 2007,129(42):12624-12625.
[43] Beermann V, Gocyla M, Willinger E , et al. Rh-doped Pt-Ni octahedral nanoparticles: understanding the correlation between elemental distribution, oxygen reduction reaction, and shape stability[J]. Nano Letters, 2016,16(3):1719-1725.
[44] Bu L Z, Shao Q, Bin E , et al. PtPb/PtNi intermetallic core/atomic layer shell octahedra for efficient oxygen reduction electrocatalysis[J]. Journal of the American Chemical Society, 2017,139(28):9576-9582.
[45] Xu Q F, Chen W L, Yan Y C , et al. Multimetallic AuPd@Pd@Pt core-interlayer-shell icosahedral electrocatalysts for highly efficient oxygen reduction reaction[J]. Science Bulletin, 2018,63(8):494-501.
[46] Cademartiri L, Ozin G A . Ultrathin nanowires a materials chemistry perspective[J]. Advanced Materials, 2009,21(9):1013-1020.
[47] Koenigsmann C, Scofield M E, Liu H , et al. Designing enhanced one-dimensional electrocatalysts for the oxygen reduction reaction: Probing size- and composition-dependent electrocatalytic behavior in noble metal nanowires[J]. Journal of Physical Chemistry Letters, 2012,3(22):3385-3398.
[48] Zhou X M, Yang H C, Wang C X , et al. Visible light induced photocatalytic degradation rhodamine B on one-dimensional iron oxide particles[J]. Journal of Physical Chemistry C, 2010,114(40):17051-17061.
[49] Liu W, Herrmann A K, Bigall N C , et al. Noble metal aerogels-synjournal, characterization, and application as electrocatalysts[J]. Accounts of Chemical Research, 2015,48(2):154-162.
[50] Liu W, Rodriguez P, Borchardt L , et al. Bimetallic aerogels: high-performance electrocatalysts for the oxygen reduction reaction[J]. Angewandte Chemie International Edition, 2013,52(37):9849-9852.
[51] Zhang Z Y, Li M J, Wu Z L , et al. Ultra-thin PtFe-nano-wires as durable electrocatalysts for fuel cells[J]. Nano-technology, 2011,22(1):015602.
[52] Higgins D C, Ye S, Knights S , et al. Highly durable platinum-cobalt nanowires by microwave irradiation as oxygen reduction catalyst for PEM fuel cell[J]. Electrochemical and Solid State Letters, 2012,15(6):B83-B85.
[53] Guo S J, Li D G, Zhu H Y , et al. FePt and CoPt nanowires as efficient catalysts for the oxygen reduction reaction[J]. Angewandte Chemie International Edition, 2013,52(12):3465-3468.
[54] Jiang K Z, Zhao D D, Guo S J , et al. Efficient oxygen reduction catalysis by subnanometer Pt alloy nanowires[J]. Science Advances, 2017,3(2):e1601705.
[55] Liu L F, Pippel E . Low-platinum-content quaternary PtCuCoNi nanotubes with markedly enhanced oxygen reduction activity[J]. Angewandte Chemie International Edition, 2011,50(12):2729-2733.
[56] Li M F, Zhao Z P, Cheng T , et al. Ultrafine jagged platinum nanowires enable ultrahigh mass activity for the oxygen reduction reaction[J]. Science, 2016,354(6318):1414-1419.
[57] Dai Y, Ou L H, Liang W , et al. Efficient and superiorly durable Pt-lean electrocatalysts of Pt-W alloys for the oxygen reduction reaction[J]. The Journal of Physical Chemistry C, 2011,115(5):2162-2168.
[58] Stamenkovic V R, Fowler B, Mun B S , et al. Improved oxygen reduction activity on Pt3Ni(111) via increased surface site availability[J]. Science, 2007,315(5811):493-497.
[59] Fowler B, Lucas C A, Omer A , et al. Segregation and stability at Pt3Ni(111) surfaces and Pt75Ni25 nanoparticles[J]. Electrochimica Acta, 2008,53(21):6076-6080.
[60] Yang X, Roling L T, Vara M , et al. Synjournal and characterization of Pt-Ag alloy nanocages with enhanced activity and durability toward oxygen reduction[J]. Nano Letters, 2016,16(10):6644-6649.
[61] Choi S I, Xie S, Shao M , et al. Synjournal and characterization of 9 nm Pt-Ni octahedra with a record high activity of 3.3 A/mg(Pt) for the oxygen reduction reaction[J]. Nano Letters, 2013,13(7):3420-3425.
[62] Carpenter M K, Moylan T E, Kukreja R S , et al. Solvo-thermal synjournal of platinum alloy nanoparticles for oxygen reduction electrocatalysis[J]. Journal of the American Chemical Society, 2012,134(20):8535-8542.
[63] Chen C, Kang Y J, Huo Z Y , et al. Highly crystalline multimetallic nanoframes with three-dimensional electrocatalytic surfaces[J]. Science, 2014,343(6177):1339-1343.
[64] Schmies H, Hornberger E, Anke B , et al. Impact of carbon support functionalization on the electrochemical stability of Pt fuel cell catalysts[J]. Chemistry of Materials, 2018,30(20):7287-7295.
[65] Beermann V, Gocyla M, Kuehl S , et al. Tuning the electrocatalytic oxygen reduction reaction activity and stability of shape-controlled Pt-Ni nanoparticles by thermal annealing elucidating the surface atomic structural and compositional changes[J]. Journal of the American Chemical Society, 2017,139(46):16536-16547.
[66] Becknell N, Son Y, Kim D , et al. Control of architecture in rhombic dodecahedral Pt-Ni nanoframe electrocatalysts[J]. Journal of the American Chemical Society, 2017,139(34):11678-11681.
[67] Ding J B, Bu L Z, Guo S J , et al. Morphology and phase controlled construction of Pt-Ni nanostructures for efficient electrocatalysis[J]. Nano Letters, 2016,16(4):2762-2767.
文章导航

/