欢迎访问《电化学(中英文)》期刊官方网站,今天是
庆祝衣宝廉院士八十华诞专辑

水电解析氢低贵/非贵金属催化剂的研究进展

  • 李阳 ,
  • 罗兆艳 ,
  • 葛君杰 ,
  • 刘长鹏 ,
  • 邢巍
展开
  • 1.中国科学院长春应用化学研究所,电分析化学国家重点实验室,吉林省低碳化学电源重点实验室,吉林 长春130022;2.中国科学技术大学应用化学与工程学院,安徽 合肥 230026

收稿日期: 2018-09-27

  修回日期: 2018-10-10

  网络出版日期: 2021-12-17

基金资助

国家自然科学基金(No. 21433003, No. 21733004)、中国科学院战略重点研究先导项目(No. XDA21090400, No. XDA09030104)、吉林省科技发展项目(No. 20180101030JC, No. 20170520150JH)资助

Research Progress in Hydrogen Evolution Low Noble/Non-Precious Metal Catalysts of Water Electrolysis

  • LI Yang ,
  • LUO Zhao-yan ,
  • GE Jun-jie ,
  • LIU Chang-peng ,
  • XING Wei
Expand
  • 1.State Key Laboratory of Electroanalytical Chemistry, Jilin Province Key Laboratory of Low Carbon Chemical Power Source, Changchun Institute of Applied Chemistry, Changchun 130022, China; 2.Shcool of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China

Received date: 2018-09-27

  Revised date: 2018-10-10

  Online published: 2021-12-17

摘要

氢气作为能量载体的氢能技术由于其清洁性、高能量密度等优势已获得越来越多的青睐与关注. 其中,可持续的产氢技术是未来氢能经济发展的必要先决条件. 通过可再生资源电力驱动的电解水技术是支持氢能经济可持续发展的重要途径,高活性、低成本的析氢催化剂的开发利用是提高水电解技术效率并降低其成本的关键因素. 本文主要介绍了近年来包括低铂催化剂和金属硫化物、金属磷化物、金属硒化物等非铂过渡金属催化剂在析氢方面的研究进展,详细讨论了析氢反应的催化性能、合成方法以及结构?鄄催化性能的关系,最后总结展望了水电解低铂及非铂过渡金属催化剂在未来发展过程中所面临的机遇与挑战.

本文引用格式

李阳 , 罗兆艳 , 葛君杰 , 刘长鹏 , 邢巍 . 水电解析氢低贵/非贵金属催化剂的研究进展[J]. 电化学, 2018 , 24(6) : 572 -588 . DOI: 10.13208/j.electrochem.180855

Abstract

Hydrogen energy technology with hydrogen as an energy carrier is gaining more and more attention due to its cleanliness and high energy density. Hydrogen fuel cell vehicles have been listed as one of the ultimate energy technologies in the 21st century. Among them, sustainable hydrogen production technology is a necessary prerequisite for the future development of hydrogen energy economy. Electrolyzed water technology driven by renewable resources represents an important way to support the sustainable development of hydrogen energy economy. The development and utilization of high activity, low cost hydrogen evolution catalysts is a key factor in improving the efficiency and reducing the cost of water electrolysis technology. This paper mainly introduces the recent research progress of hydrogen evolution catalysts including low platinum catalysts and non-platinum transition metal catalysts such as metal sulfides metal phosphides, metal selenides, etc; catalytic properties, synthesis methods, and structure-catalytic properties. Finally, the advantages and challenges of water electrolysis low platinum and non-platinum transition metal catalysts in the future development are prospected.

参考文献

[1] Ma Y Y(马元元), Guo Z W(郭昭薇), Wang Y G(王永刚), et al. The new application of battery-electrode reaction: decoupled hydrogen production in water electrolysis[J]. Journal of Electrochemistry(电化学),2018,24(5):444-454.

[2] Seh Z W, Kibsgaard J, Dickens C F, et al. Combining theory and experiment in electrocatalysis: Insights into materials design[J]. Science, 2017, 355(6321): eaad4998.

[3] Wang M Y, Wang Z, Gong X Z, et al. The intensification technologies to water electrolysis for hydrogen production - A review[J]. Renewable & Sustainable Energy Reviews, 2014, 29: 573-588.

[4] Zou X X, Zhang Y. Noble metal-free hydrogen evolution catalysts for water splitting[J]. Chemical Society Reviews, 2015, 44 (15): 5148-5180.

[5] Trancik J E. Back the renewables boom[J]. Nature, 2014, 507(7492): 300-302.

[6] Zhang L L(张玲玲), Dong S J(董绍俊). Developments of photo-assisted fuel cells[J]. Journal of Electrochemistry(电化学), 2016, 22(3): 219-230.

[7] Mallouk T E. Water electrolysis divide and conquer[J]. Nature Chemistry, 2013, 5(5): 362-363.

[8] Thomas C E. Fuel cell and battery electric vehicles compared[J]. International Journal of Hydrogen Energy, 2009, 34 (15): 6005-6020.

[9] Kreuter W, Hofmann H. Electrolysis: The important energy transformer in a world of sustainable energy[J]. International Journal of Hydrogen Energy, 1998, 23(8): 661-666.

[10] Leroy R L. Industrial water electrolysis-present and future[J]. International Journal of Hydrogen Energy, 1983, 8(6): 401-417.

[11] Jiao Y, Zheng Y, Jaroniec M T, et al. Design of electrocatalysts for oxygen- and hydrogen-involving energy conversion reactions[J]. Chemical Society Reviews, 2015, 44(8): 2060-2086.

[12] Voiry D, Yang J, Chhowalla M. Recent strategies for improving the catalytic activity of 2D TMD nanosheets toward the hydrogen evolution reaction[J]. Advanced Materials, 2016, 28(29): 6197-6206.

[13] Zeng K, Zhang D K. Recent progress in alkaline water electrolysis for hydrogen production and applications[J]. Progress in Energy and Combustion Science, 2010, 36(3): 307-326.

[14] Cook T R, Dogutan D K, Reece S Y, et al. Solar energy supply and storage for the legacy and non legacy worlds[J]. Chemical Reviews, 2010, 110(11): 6474-6502.

[15] Sheng W C, Gasteiger H A, Shao-Horn Y. Hydrogen oxidation and evolution reaction kinetics on platinum: acid vs alkaline electrolytes[J]. Journal of The Electrochemical Society, 2010, 157(11): B1529-B1536.

[16] Shinde S S, Sami A, Lee J H. Electrocatalytic hydrogen evolution using graphitic carbon nitride coupled with nanoporous graphene co-doped by S and Se[J]. Journal of Materials Chemistry A, 2015, 3(24): 12810-12819.

[17] Hinnemann B, Moses P G, Bonde J, et al. Biornimetic hydrogen evolution: MoS2 nanoparticles as catalyst for hydrogen evolution[J]. Journal of the American Chemical Society, 2005, 127(15): 5308-5309.

[18] Vrubel H, Moehl T, Graetzel M, et al. Revealing and accelerating slow electron transport in amorphous molybdenum sulphide particles for hydrogen evolution reaction[J]. Chemical Communications, 2013, 49(79): 8985-8987.

[19] Yan H J, Jiao Y Q, Wu A P, et al. Cluster-like molybdenum phosphide anchored on reduced graphene oxide for efficient hydrogen evolution over a broad pH range[J]. Chemical Communications, 2016, 52(61): 9530-9533.

[20] Quaino P, Juarez F, Santos E, et al. Volcano plots in hydrogen electrocatalysis-uses and abuses[J]. Beilstein Journal of Nanotechnology, 2014, 5: 846-854.

[21] Chang J F, Xiao Y, Luo Z Y, et al. Recent progress of non-noble metal catalysts in water electrolysis for hydrogen production[J]. Acta Physico-Chimica Sinica, 2016, 32(7): 1556-1592.

[22] Antolini E. Catalysts for direct ethanol fuel cells[J]. Journal of Power Sources, 2007, 170(1): 1-12.

[23] Li K, Li Y, Wang Y M, et al. Enhanced electrocatalytic performance for the hydrogen evolution reaction through surface enrichment of platinum nanoclusters alloying with ruthenium in situ embedded in carbon[J]. Energy & Environmental Science, 2018, 11(5): 1232-1239.

[24] Wang J, Chen J W, Chen J D, et al. Designed synthesis of size-controlled Pt-Cu alloy nanoparticles encapsulated in carbon nanofibers and their high efficient electrocatalytic activity toward hydrogen evolution reaction[J]. Advanced Materials Interfaces, 2017, 4(12): 1700005.

[25] Tiwari J N, Sultan S, Myung C W, et al. Multicomponent electrocatalyst with ultralow Pt loading and high hydrogen evolution activity[J]. Nature Energy, 2018, 3(9): 773-782.

[26] Kim J, Kim H E, Lee H. Single-atom catalysts of precious metals for electrochemical reactions[J]. ChemSusChem, 2018, 11(1): 104-113.

[27] Cheng N C, Stambula S, Wang D, et al. Platinum single-atom and cluster catalysis of the hydrogen evolution reaction[J]. Nature Communications, 2016, 7: 13638.

[28] Jiang B B, Liao F, Sun Y Y, et al. Pt nanocrystals on nitrogen-doped graphene for the hydrogen evolution reaction using Si nanowires as a sacrificial template[J]. Nano-scale, 2017, 9(28): 10138-10144.

[29] Huang R J, Sun Z T, Chen S, et al. Pt-Cu hierarchical quasi great dodecahedrons with abundant twinning defects for hydrogen evolution[J]. Chemical Communications, 2017, 53(51): DOI: 10.1039/c7cc03643d.

[30] Wu Z X(吴则星) Wang J(王杰) Guo J P(郭军坡) et al. Recent progresses in molybdenum-based electrocatalysts for the hydrogen reaction[J]. Journal of Electrochemistry(电化学) 2016 22(2): 194-204.

[31] Luo Z Y, Ouyang Y X, Zhang H, et al. Chemically activating MoS2 via spontaneous atomic palladium interfacial doping towards efficient hydrogen evolution[J]. Nature Communications, 2018, 9: 2120.

[32] Xie J F, Zhang H, Li S, et al. Defect-rich MoS2 ultrathin nanosheets with additional active edge sites for enhanced electrocatalytic hydrogen evolution[J]. Advanced Materials, 2013, 25(40): 5807-5813.

[33] Yang Q B, He Y, Zou C J, et al. Composite electrocatalyst MoxW1-xS2 nanosheets on carbon fiber paper for highly efficient hydrogen evolution reaction[J]. Journal of Solid State Electrochemistry, 2018, 22(10): 2969-2976.

[34] Oyama S T, Gott T, Zhao H, et al. Transition metal phosphide hydroprocessing catalysts: A review[J]. Catalysis Today, 2009, 143 (1/2): 94-107.

[35] Liu P, Rodriguez J A. Catalysts for hydrogen evolution from the NiFe hydrogenase to the Ni2P(001) surface: The importance of ensemble effect[J]. Journal of the American Chemical Society, 2005, 127(42): 14871-14878.

[36] Pan Y, Liu Y, Zhao J, et al. Monodispersed nickel phosphide nanocrystals with different phases: Synthesis, characterization and electrocatalytic properties for hydrogen evolution[J]. Journal of Materials Chemistry A, 2015, 3(4): 1656-1665.

[37] Popczun E J, McKone J R, Read C G, et al. Nanostructured nickel phosphide as an electrocatalyst for the hydrogen evolution reaction[J]. Journal of the American Chemical Society, 2013, 135(25): 9267-9270.

[38] Chang J F, Li S T, Li G Q, et al. Monocrystalline Ni12P5 hollow spheres with ultrahigh specific surface areas as advanced electrocatalysts for the hydrogen evolution reaction[J]. Journal of Materials Chemistry A, 2016, 4(25): 9755-9759.

[39] Chang J F, Li K, Wu Zv J, et al. Sulfur-doped nickel phosphide nanoplates arrays: a monolithic electrocatalyst for efficient hydrogen evolution reactions[J]. ACS Applied Materials & Interfaces, 2018, 10(31): 26303-26311.

[40] Popczun E J, Read C G, Roske C W, et al. Highly active electrocatalysis of the hydrogen evolution reaction by cobalt phosphide nanoparticles**[J]. Angewandte Chemie-International Edition, 2014, 53(21): 5427-5430.

[41] Chang J F, Ouyang Y X, Ge J J, et al. Cobalt phosphosulfide in the tetragonal phase: a highly active and durable catalyst for the hydrogen evolution reaction[J]. Journal of Materials Chemistry A, 2018, 6(26): 12353-12360.

[42] Zhao W T, Lu X Q, Selvaraj M, et al. MXP(M=Co/Ni)@carbon core-shell nanoparticles embedded in 3D cross-linked graphene aerogel derived from seaweed biomass for hydrogen evolution reaction[J]. Nanoscale, 2018, 10(20): 9698-9706.

[43] Anantharaj S, Ede S R, Sakthikumar K, et al. Recent trends and perspectives in electrochemical water splitting with an emphasis on sulfide, selenide, and phosphide catalysts of Fe, Co, and Ni: A review[J]. ACS Catalysis, 2016, 6(12): 8069-8097.

[44] Zhou X L, Jiang J, Ding T, et al. Fast colloidal synthesis of scalable Mo-rich hierarchical ultrathin MoSe2-x nano-sheets for high-performance hydrogen evolution[J]. Nano-scale, 2014, 6(19): 11046-11051.

[45] Liu B, Zhao Y F, Peng H Q, et al. Nickel-cobalt diselenide 3D mesoporous nanosheet networks supported on Ni foam: an all-pH highly efficient integrated electrocatalyst for hydrogen evolution[J]. Advanced Materials, 2017, 29(19): 1606521.

[46] Fang L, Li W X, Guan Y X, et al. Tuning unique peapod-like Co(SxSe1-x)(2) nanoparticles for efficient overall water splitting[J]. Advanced Functional Materials, 2017, 27(24): 1701008.

[47] Deng S J, Zhong Y, Zeng Y X, et al. Directional construction of vertical nitrogen-doped 1T-2H MoSe2/grapheene shell/core nanoflake arrays for efficient hydrogen evolution reaction[J]. Advanced Materials, 2017, 29(21): 1700748.

文章导航

/