Pd/C催化剂用于CO2电化学还原生成CO:Pd载量的影响
收稿日期: 2018-09-05
修回日期: 2018-09-17
网络出版日期: 2018-09-21
Pd/C Catalysts for CO2 Electroreduction to CO:Pd Loading Effect
Received date: 2018-09-05
Revised date: 2018-09-17
Online published: 2018-09-21
Supported by
We gratefully acknowledge financial support from the Ministry of Science and Technology of China (Grant 2017YFA0700102), the National Natural Science Foundation of China (Grants 21573222 and 91545202), Outstanding Youth Talent Project of Dalian (2017RJ03), Dalian Institute of Chemical Physics (Grant DICP DMTO201702), the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDB17020200). G.X. Wang thanks the financial support from CAS Youth Innovation Promotion (Grant No.2015145).support from CAS Youth Innovation Promotion (Grant No. 2015145).
高敦峰 , 阎程程 , 汪国雄 , 包信和 . Pd/C催化剂用于CO2电化学还原生成CO:Pd载量的影响[J]. 电化学, 2018 , 24(6) : 757 -765 . DOI: 10.13208/j.electrochem.180845
[2] Gao D F, Cai F, Wang G X, et al. Nanostructured heterogeneous catalysts for electrochemical reduction of CO2[J]. Current Opinion in Green and Sustainable Chemistry, 2017, 3: 39-44.
[3] Zhu D D, Liu J L, Qiao S Z. Recent advances in inorganic heterogeneous electrocatalysts for reduction of carbon dioxide[J]. Advanced Materials, 2016, 28(18): 3423-3452.
[4] Larrazábal G O, Martín A J, Pérez-Ramírez J. Building blocks for high performance in electrocatalytic CO2 reduction: materials, optimization strategies, and device engineering[J]. The Journal of Physical Chemistry Letters, 2017, 8(16): 3933-3944.
[5] Wang Y H, Liu J L, Wang Y F, et al. Tuning of CO2 reduction selectivity on metal electrocatalysts[J]. Small, 2017, 13(43): 1701809.
[6] Zhou J H, Zhang Y. Metal-based heterogeneous electrocatalysts for reduction of carbon dioxide and nitrogen: mechanisms, recent advances and perspective[J]. Reaction Chemistry & Engineering, 2018, 3: 591-625.
[7] Zhuang T T, Liang Z Q, Seifitokaldani A, et al. Steering post-C-C coupling selectivity enables high efficiency electroreduction of carbon dioxide to multi-carbon alcohols[J]. Nature Catalysis, 2018, 1(6): 421-428.
[8] Gao D F, Zhang Y, Zhou Z W, et al. Enhancing CO2 electroreduction with the metal-oxide interface[J]. Journal of the American Chemical Society, 2017, 139(16): 5652-5655.
[9] Gao S, Lin Y, Jiao X C, et al. Partially oxidized atomic cobalt layers for carbon dioxide electroreduction to liquid fuel[J]. Nature, 2016, 529(7584): 68-71.
[10] Jiang B(蒋孛), Zhang L N(张莉娜), Qin X X(秦先贤), et al. Electrodeposition of RuO2 layers on TiO2 nanotube array toward CO2 electroreduction[J]. Journal of the Electrochemistry(电化学), 2017, 23(2): 238-244.
[11] Xie H, Wang T Y, Liang J S, et al. Cu-based nanocatalysts for electrochemical reduction of CO2[J]. Nano Today, 2018, 21: 41-54.
[12] Yan C C, Li H B, Ye Y F, et al. Coordinatively unsaturated nickel-nitrogen sites towards selective and high-rate CO2 electroreduction[J]. Energy & Environmental Science, 2018, 11(5): 1204-1210.
[13] Wang X Q, Chen Z, Zhao X Y, et al. Regulation of coordination number over single Co sites: Triggering the efficient electroreduction of CO2[J]. Angewandte Chemie International Edition, 2018, 57(7): 1944-1948.
[14] Gao D F, Zhou H, Cai F, et al. Pd-containing nanostructures for electrochemical CO2 reduction reaction[J]. ACS Catalysis, 2018, 8(2): 1510-1519.
[15] Gao D F, Zhou H, Wang J, et al. Size-dependent electrocatalytic reduction of CO2 over Pd nanoparticles[J]. Journal of the American Chemical Society, 2015, 137(13): 4288-4297.
[16] Min X, Kanan M W. Pd-catalyzed electrohydrogenation of carbon dioxide to formate: high mass activity at low overpotential and identification of the deactivation pathway[J]. Journal of the American Chemical Society, 2015, 137(14): 4701-4708.
[17] Huang H W, Jia H H, Liu Z, et al. Understanding of strain effects in the electrochemical reduction of CO2: using Pd nanostructures as an ideal platform[J]. Angewandte Chemie International Edition, 2017, 56(13): 3594-3598.
[18] Zhu W J, Zhang L, Yang P P, et al. Low-coordinated edge sites on ultrathin palladium nanosheets boost carbon dioxide electroreduction performance[J]. Angewandte Chemie International Edition, 2018, 57(36): 11544-11548.
[19] Jiang B, Zhang X G, Jiang K, et al. Boosting formate production in electrocatalytic CO2 reduction over wide potential window on Pd surfaces[J]. Journal of the American Chemical Society, 2018, 140(8): 2880-2889.
[20] Klinkova A, De Luna P, Dinh C T, et al. Rational design of efficient palladium catalysts for electroreduction of carbon dioxide to formate[J]. ACS Catalysis, 2016, 6(12): 8115-8120.
[21] Zhou F L, Li H T, Fournier M, et al. Electrocatalytic CO2 reduction to formate at low overpotentials on electrodeposited Pd films: stabilized performance by suppression of CO formation[J]. ChemSusChem, 2017, 10(7): 1509-1516.
[22] Rahaman M, Dutta A, Broekmann P. Size-dependent activity of palladium nanoparticles: efficient conversion of CO2 into formate at low overpotentials[J]. ChemSusChem, 2017, 10(8): 1733-1741.
[23] Sheng W C, Kattel S, Yao S Y, et al. Electrochemical reduction of CO2 to synthesis gas with controlled CO/H2 ratios[J]. Energy & Environmental Science, 2017, 10(5): 1180-1185.
[24] Zhang W Y, Qin Q, Dai L, et al. Electrochemical reduction of carbon dioxide to methanol on hierarchical Pd/SnO2 nanosheets with abundant Pd-O-Sn interfaces[J]. Angewandte Chemie International Edition, 2018, 57(30): 9475-9479.
[25] Bai X F, Chen W, Zhao C C, et al. Exclusive formation of formic acid from CO2 electroreduction by a tunable Pd-Sn alloy[J]. Angewandte Chemie International Edition, 2017, 56(40): 12219-12223.
[26] Zhang F Y, Sheng T, Tian N, et al. Cu overlayers on tetrahexahedral Pd nanocrystals with high-index facets for CO2 electroreduction to alcohols[J]. Chemical Communications, 2017, 53(57): 8085-8088.
[27] Tao H C, Sun X F, Back S, et al. Doping palladium with tellurium for the highly selective electrocatalytic reduction of aqueous CO2 to CO[J]. Chemical Science, 2018, 9(2): 483-487.
[28] Ma S, Sadakiyo M, Heim M, et al. Electroreduction of CO2 to hydrocarbons using bimetallic Cu-Pd catalysts with different mixing patterns[J]. Journal of the American Chemical Society, 2017, 139(1): 47-50.
[29] Kortlever R, Peters I, Balemans C, et al. Palladium-gold catalyst for the electrochemical reduction of CO2 to C1-C5 hydrocarbons[J]. Chemical Communications, 2016, 52(67): 10229-10232.
[30] Yin Z, Gao D F, Yao S Y, et al. Highly selective palladium-copper bimetallic electrocatalysts for the electrochemical reduction of CO2 to CO[J]. Nano Energy, 2016, 27: 35-43.
[31] Gao D F, McCrum I T, Deo S, et al. Activity and selectivity control in CO2 electroreduction to multicarbon products over CuOx catalysts via electrolyte design[J]. ACS Catalysis, 2018, 8(11):10012-10020.
[32] Dunwell M, Lu Q, Heyes J M, et al. The central role of bicarbonate in the electrochemical reduction of carbon dioxide on gold[J]. Journal of the American Chemical Society, 2017, 139(10): 3774-3783.
[33] Gao D, Scholten F, Roldan Cuenya, B. Improved CO2 electroreduction performance on plasma-activated Cu catalysts via electrolyte design: Halide effect[J]. ACS Catalysis, 2017, 7(8): 5112-5120.
[34] Gao D F, Wang J, Wu H H, et al. pH Effect on electrocatalytic reduction of CO2 over Pd and Pt nanoparticles[J]. Electrochemistry Communications, 2015, 55: 1-5.
[35] Del Castillo A, Alvarez-Guerra M, Solla-Gullón J, et al. Electrocatalytic reduction of CO2 to formate using particulate Sn electrodes: Effect of metal loading and particle size[J]. Applied Energy, 2015, 157: 165-173.
[36] Mistry H, Behafarid F, Reske R, et al. Tuning catalytic selectivity at the mesoscale via interparticle interactions[J]. ACS Catalysis, 2016, 6(2): 1075-1080.
[37] Wang X L, Varela A S, Bergmann A, et al. Catalyst particle density controls hydrocarbon product selectivity in CO2 electroreduction on CuOx[J]. ChemSusChem, 2017, 10(22): 4642-4649.
[38] Yu J L, Liu H Y, Song S Q, et al. Electrochemical reduction of carbon dioxide at nanostructured SnO2/carbon aerogels: The effect of tin oxide content on the catalytic activity and formate selectivity[J]. Applied Catalysis A: General, 2017, 545: 159-166.
[39] Gao D F, Zhou H, Cai F, et al. Switchable CO2 electroreduction via engineering active phases of Pd nanoparticles[J]. Nano Research, 2017, 10(6): 2181-2191.
[40] Lv Q, Meng Q L, Liu W W, et al. Pd-PdO interface as active site for HCOOH selective dehydrogenation at ambient condition[J]. The Journal of Physical Chemistry C, 2018, 122(4): 2081-2088.
[41] Cai F, Gao D F, Zhou H, et al. Electrochemical promotion of catalysis over Pd nanoparticles for CO2 reduction[J]. Chemical Science, 2017, 8(4): 2569-2573.
[42] Cai F, Gao D F, Si R, et al. Effect of metal deposition sequence in carbon-supported Pd-Pt catalysts on activity towards CO2 electroreduction to formate[J]. Electrochemistry Communications, 2017, 76: 1-5.
[43] Nesselberger M, Roefzaad M, Fayçal Hamou R, et al. The effect of particle proximity on the oxygen reduction rate of size-selected platinum clusters[J]. Nature Materials, 2013, 12(10): 919-924.
[44] Taylor S, Fabbri E, Levecque P, et al. The Effect of platinum loading and surface morphology on oxygen reduction activity[J]. Electrocatalysis, 2016, 7(4): 287-296.
[45] Antolini E. Structural parameters of supported fuel cell catalysts: The effect of particle size, inter-particle distance and metal loading on catalytic activity and fuel cell performance[J]. Applied Catalysis B: Environmental, 2016, 181: 298-313.
[46] Hauff K, Tuttlies U, Eigenberger G, et al. A global description of DOC kinetics for catalysts with different platinum loadings and aging status[J]. Applied Catalysis B: Environmental, 2010, 100(1/2): 10-18.
[47] Kang S B, Han S J, Nam S B, et al. Activity function describing the effect of Pd loading on the catalytic performance of modern commercial TWC[J]. Chemical Engineering Journal, 2012, 207(SI): 117-121.
/
〈 |
|
〉 |