欢迎访问《电化学(中英文)》期刊官方网站,今天是
庆祝衣宝廉院士八十华诞专辑

Pd/C催化剂用于CO2电化学还原生成CO:Pd载量的影响

  • 高敦峰 ,
  • 阎程程 ,
  • 汪国雄 ,
  • 包信和
展开
  • 中国科学院大连化学物理研究所,大连洁净能源国家实验室,催化基础国家重点实验室, 辽宁 大连 116023

收稿日期: 2018-09-05

  修回日期: 2018-09-17

  网络出版日期: 2018-09-21

Pd/C Catalysts for CO2 Electroreduction to CO:Pd Loading Effect

  • GAO Dun-feng ,
  • YAN Cheng-cheng ,
  • WANG Guo-xiong ,
  • BAO Xin-he
Expand
  • State Key Laboratory of Catalysis, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China

Received date: 2018-09-05

  Revised date: 2018-09-17

  Online published: 2018-09-21

Supported by

We gratefully acknowledge financial support from the Ministry of Science and Technology of China (Grant 2017YFA0700102), the National Natural Science Foundation of China (Grants 21573222 and 91545202), Outstanding Youth Talent Project of Dalian (2017RJ03), Dalian Institute of Chemical Physics (Grant DICP DMTO201702), the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDB17020200). G.X. Wang thanks the financial support from CAS Youth Innovation Promotion (Grant No.2015145).support from CAS Youth Innovation Promotion (Grant No. 2015145).

摘要

CO2电化学还原反应可以将CO2转化为燃料并同时实现再生能源的有效存储. 目前纳米结构的多相催化剂已经广泛应用于此反应,其中碳负载钯纳米粒子(Pd/C)表现出优异的CO2电化学还原性能. 本工作研究了钯载量对于Pd/C催化剂结构以及其催化CO2还原生成CO反应活性和选择性的影响. 不同载量的Pd/C催化剂通过液相还原方法制备,钯纳米粒子均匀地分散在碳载体上,载量并没有明显改变对纳米粒子的粒径. 在优选的电解质(0.1 mol·L-1 KHCO3)中,CO法拉第效率与载量呈现火山型曲线关系,-0.89 V时载量为20wt%的Pd/C催化剂达到最高的CO法拉第效率(91.2%). 生成CO的几何电流密度随着钯载量的增加而增加,但CO转换频率具有相反的趋势,载量为2.5wt%的Pd/C催化剂具有最高的转换频率. 这种载量对CO2电化学还原反应活性和选择性的影响主要由活性位的数量、反应动力学、中间物种的稳定性以及反应物、中间物种和产物的传质过程等共同决定.

本文引用格式

高敦峰 , 阎程程 , 汪国雄 , 包信和 . Pd/C催化剂用于CO2电化学还原生成CO:Pd载量的影响[J]. 电化学, 2018 , 24(6) : 757 -765 . DOI: 10.13208/j.electrochem.180845

Abstract

Nanostructured heterogeneous catalysts have been widely used in the electrochemical carbon dioxide (CO2) reduction reaction (CO2RR), which can simultaneously achieve the electrocatalytic conversion of CO2 to fuels and the storage of renewable energy sources. Carbon supported palladium nanoparticles (Pd/C) catalysts have been previously reported to show excellent CO2RR performance. However, the crucial role of the metal loading in supported electrocatalysts has been rarely reported. In this work, we study the Pd loading effect on the structure of Pd/C catalysts as well as their activity and selectivity of CO2RR to CO. The Pd loadings in Pd/C catalysts were well controlled by an effective liquid synthesis method. The Pd nanoparticles were homogeneously dispersed on the carbon support, and the Pd loading played a minor role in the particle size. The as-prepared Pd/C catalysts were studied in an optimized electrolyte, 0.1 mmol·L-1 KHCO3. It shows a volcano relationship between CO Faradaic efficiency (FE) and the Pd loading, with the highest CO FE of 91.2% over the 20wt% Pd/C catalyst at -0.89 V versus the reversible hydrogen electrode (vs. RHE). The geometric CO partial current density had a positive correlation with the Pd loading, while the highest turnover frequency for CO production was observed over the 2.5wt% Pd/C catalyst (~ 918 h-1 at -0.89 V vs. RHE). The Pd loading effects on the activity and selectivity of CO2RR to CO could be attributed to the number of active sites, reaction kinetics, and the stabilization of key intermediates, as well as the mass transport of reactants, intermediates and products. This work provides new insight into the loading effect, an important reactivity descriptor determining the CO2RR performance.

参考文献

[1]  Montoya J H, Seitz L C, Chakthranont P, et al. Materials for solar fuels and chemicals[J]. Nature Materials, 2017, 16(1): 70-81.
[2]  Gao D F, Cai F, Wang G X, et al. Nanostructured heterogeneous catalysts for electrochemical reduction of CO2[J]. Current Opinion in Green and Sustainable Chemistry, 2017, 3: 39-44.
[3]  Zhu D D, Liu J L, Qiao S Z. Recent advances in inorganic heterogeneous electrocatalysts for reduction of carbon dioxide[J]. Advanced Materials, 2016, 28(18): 3423-3452.
[4]  Larrazábal G O, Martín A J, Pérez-Ramírez J. Building blocks for high performance in electrocatalytic CO2 reduction: materials, optimization strategies, and device engineering[J]. The Journal of Physical Chemistry Letters, 2017, 8(16): 3933-3944.
[5]  Wang Y H, Liu J L, Wang Y F, et al. Tuning of CO2 reduction selectivity on metal electrocatalysts[J]. Small, 2017, 13(43): 1701809.
[6]  Zhou J H, Zhang Y. Metal-based heterogeneous electrocatalysts for reduction of carbon dioxide and nitrogen: mechanisms, recent advances and perspective[J]. Reaction Chemistry & Engineering, 2018, 3: 591-625.
[7]  Zhuang T T, Liang Z Q, Seifitokaldani A, et al. Steering post-C-C coupling selectivity enables high efficiency electroreduction of carbon dioxide to multi-carbon alcohols[J]. Nature Catalysis, 2018, 1(6): 421-428.
[8]  Gao D F, Zhang Y, Zhou Z W, et al. Enhancing CO2 electroreduction with the metal-oxide interface[J]. Journal of the American Chemical Society, 2017, 139(16): 5652-5655.
[9]  Gao S, Lin Y, Jiao X C, et al. Partially oxidized atomic cobalt layers for carbon dioxide electroreduction to liquid fuel[J]. Nature, 2016, 529(7584): 68-71.
[10]  Jiang B(蒋孛), Zhang L N(张莉娜), Qin X X(秦先贤), et al. Electrodeposition of RuO2 layers on TiO2 nanotube array toward CO2 electroreduction[J]. Journal of the Electrochemistry(电化学), 2017, 23(2): 238-244.
[11]  Xie H, Wang T Y, Liang J S, et al. Cu-based nanocatalysts for electrochemical reduction of CO2[J]. Nano Today, 2018, 21: 41-54.
[12]  Yan C C, Li H B, Ye Y F, et al. Coordinatively unsaturated nickel-nitrogen sites towards selective and high-rate CO2 electroreduction[J]. Energy & Environmental Science, 2018, 11(5): 1204-1210.
[13]  Wang X Q, Chen Z, Zhao X Y, et al. Regulation of coordination number over single Co sites: Triggering the efficient electroreduction of CO2[J]. Angewandte Chemie International Edition, 2018, 57(7): 1944-1948.
[14]  Gao D F, Zhou H, Cai F, et al. Pd-containing nanostructures for electrochemical CO2 reduction reaction[J]. ACS Catalysis, 2018, 8(2): 1510-1519.
[15]  Gao D F, Zhou H, Wang J, et al. Size-dependent electrocatalytic reduction of CO2 over Pd nanoparticles[J]. Journal of the American Chemical Society, 2015, 137(13): 4288-4297.
[16]  Min X, Kanan M W. Pd-catalyzed electrohydrogenation of carbon dioxide to formate: high mass activity at low overpotential and identification of the deactivation pathway[J]. Journal of the American Chemical Society, 2015, 137(14): 4701-4708.
[17]  Huang H W, Jia H H, Liu Z, et al. Understanding of strain effects in the electrochemical reduction of CO2: using Pd nanostructures as an ideal platform[J]. Angewandte Chemie International Edition, 2017, 56(13): 3594-3598.
[18]  Zhu W J, Zhang L, Yang P P, et al. Low-coordinated edge sites on ultrathin palladium nanosheets boost carbon dioxide electroreduction performance[J]. Angewandte Chemie International Edition, 2018, 57(36): 11544-11548.
[19]  Jiang B, Zhang X G, Jiang K, et al. Boosting formate production in electrocatalytic CO2 reduction over wide potential window on Pd surfaces[J]. Journal of the American Chemical Society, 2018, 140(8): 2880-2889.
[20]  Klinkova A, De Luna P, Dinh C T, et al. Rational design of efficient palladium catalysts for electroreduction of carbon dioxide to formate[J]. ACS Catalysis, 2016, 6(12): 8115-8120.
[21]  Zhou F L, Li H T, Fournier M, et al. Electrocatalytic CO2 reduction to formate at low overpotentials on electrodeposited Pd films: stabilized performance by suppression of CO formation[J]. ChemSusChem, 2017, 10(7): 1509-1516.
[22]  Rahaman M, Dutta A, Broekmann P. Size-dependent activity of palladium nanoparticles: efficient conversion of CO2 into formate at low overpotentials[J]. ChemSusChem, 2017, 10(8): 1733-1741.
[23]  Sheng W C, Kattel S, Yao S Y, et al. Electrochemical reduction of CO2 to synthesis gas with controlled CO/H2 ratios[J]. Energy & Environmental Science, 2017, 10(5): 1180-1185.
[24]  Zhang W Y, Qin Q, Dai L, et al. Electrochemical reduction of carbon dioxide to methanol on hierarchical Pd/SnO2 nanosheets with abundant Pd-O-Sn interfaces[J]. Angewandte Chemie International Edition, 2018, 57(30): 9475-9479.
[25]  Bai X F, Chen W, Zhao C C, et al. Exclusive formation of formic acid from CO2 electroreduction by a tunable Pd-Sn alloy[J]. Angewandte Chemie International Edition, 2017, 56(40): 12219-12223.
[26]  Zhang F Y, Sheng T, Tian N, et al. Cu overlayers on tetrahexahedral Pd nanocrystals with high-index facets for CO2 electroreduction to alcohols[J]. Chemical Communications, 2017, 53(57): 8085-8088.
[27]  Tao H C, Sun X F, Back S, et al. Doping palladium with tellurium for the highly selective electrocatalytic reduction of aqueous CO2 to CO[J]. Chemical Science, 2018, 9(2): 483-487.
[28]  Ma S, Sadakiyo M, Heim M, et al. Electroreduction of CO2 to hydrocarbons using bimetallic Cu-Pd catalysts with different mixing patterns[J]. Journal of the American Chemical Society, 2017, 139(1): 47-50.
[29]  Kortlever R, Peters I, Balemans C, et al. Palladium-gold catalyst for the electrochemical reduction of CO2 to C1-C5 hydrocarbons[J]. Chemical Communications, 2016, 52(67): 10229-10232.
[30]  Yin Z, Gao D F, Yao S Y, et al. Highly selective palladium-copper bimetallic electrocatalysts for the electrochemical reduction of CO2 to CO[J]. Nano Energy, 2016, 27: 35-43.
[31]  Gao D F, McCrum I T, Deo S, et al. Activity and selectivity control in CO2 electroreduction to multicarbon products over CuOx catalysts via electrolyte design[J]. ACS Catalysis, 2018, 8(11):10012-10020. 
[32]  Dunwell M, Lu Q, Heyes J M, et al. The central role of bicarbonate in the electrochemical reduction of carbon dioxide on gold[J]. Journal of the American Chemical Society, 2017, 139(10): 3774-3783.
[33]  Gao D, Scholten F, Roldan Cuenya, B. Improved CO2 electroreduction performance on plasma-activated Cu catalysts via electrolyte design: Halide effect[J]. ACS Catalysis, 2017, 7(8): 5112-5120.
[34]  Gao D F, Wang J, Wu H H, et al. pH Effect on electrocatalytic reduction of CO2 over Pd and Pt nanoparticles[J]. Electrochemistry Communications, 2015, 55: 1-5.
[35]  Del Castillo A, Alvarez-Guerra M, Solla-Gullón J, et al. Electrocatalytic reduction of CO2 to formate using particulate Sn electrodes: Effect of metal loading and particle size[J]. Applied Energy, 2015, 157: 165-173.
[36]  Mistry H, Behafarid F, Reske R, et al. Tuning catalytic selectivity at the mesoscale via interparticle interactions[J]. ACS Catalysis, 2016, 6(2): 1075-1080.
[37]  Wang X L, Varela A S, Bergmann A, et al. Catalyst particle density controls hydrocarbon product selectivity in CO2 electroreduction on CuOx[J]. ChemSusChem, 2017, 10(22): 4642-4649.
[38]  Yu J L, Liu H Y, Song S Q, et al. Electrochemical reduction of carbon dioxide at nanostructured SnO2/carbon aerogels: The effect of tin oxide content on the catalytic activity and formate selectivity[J]. Applied Catalysis A: General, 2017, 545: 159-166.
[39]  Gao D F, Zhou H, Cai F, et al. Switchable CO2 electroreduction via engineering active phases of Pd nanoparticles[J]. Nano Research, 2017, 10(6): 2181-2191.
[40]  Lv Q, Meng Q L, Liu W W, et al. Pd-PdO interface as active site for HCOOH selective dehydrogenation at ambient condition[J]. The Journal of Physical Chemistry C, 2018, 122(4): 2081-2088.
[41]  Cai F, Gao D F, Zhou H, et al. Electrochemical promotion of catalysis over Pd nanoparticles for CO2 reduction[J]. Chemical Science, 2017, 8(4): 2569-2573.
[42]  Cai F, Gao D F, Si R, et al. Effect of metal deposition sequence in carbon-supported Pd-Pt catalysts on activity towards CO2 electroreduction to formate[J]. Electrochemistry Communications, 2017, 76: 1-5.
[43]  Nesselberger M, Roefzaad M, Fayçal Hamou R, et al. The effect of particle proximity on the oxygen reduction rate of size-selected platinum clusters[J]. Nature Materials, 2013, 12(10): 919-924.
[44]  Taylor S, Fabbri E, Levecque P, et al. The Effect of platinum loading and surface morphology on oxygen reduction activity[J]. Electrocatalysis, 2016, 7(4): 287-296.
[45]  Antolini E. Structural parameters of supported fuel cell catalysts: The effect of particle size, inter-particle distance and metal loading on catalytic activity and fuel cell performance[J]. Applied Catalysis B: Environmental, 2016, 181: 298-313.
[46]  Hauff K, Tuttlies U, Eigenberger G, et al. A global description of DOC kinetics for catalysts with different platinum loadings and aging status[J]. Applied Catalysis B: Environmental, 2010, 100(1/2): 10-18.
[47]  Kang S B, Han S J, Nam S B, et al. Activity function describing the effect of Pd loading on the catalytic performance of modern commercial TWC[J]. Chemical Engineering Journal, 2012, 207(SI): 117-121.

文章导航

/