欢迎访问《电化学(中英文)》期刊官方网站,今天是
研究论文

ZnCo2O4电极材料的形貌调控制备与超级电容特性的研究

  • 周岳珅 ,
  • 李 梦 ,
  • 吴 双 ,
  • 李照磊 ,
  • 高延敏
展开
  • 1. 江苏科技大学材料科学与工程学院,江苏 镇江 212003;2. 南京大学材料科学和工程系,江苏 南京 210093

收稿日期: 2018-06-25

  修回日期: 2018-07-12

  网络出版日期: 2019-12-28

基金资助

Morphology Controlled Preparations and Electrochemical Properties of ZnCo2O4 Electrode Materials for Supercapacitors

  • ZHOU Yue-shen ,
  • LI Meng ,
  • WU Shuang ,
  • LI Zhao-lei ,
  • GAO Yan-min
Expand
  • 1. School of Materials Science and Engineering, Jiangsu University of Science and Technology,Zhenjiang 212003, Jiangsu, China; 2. Department of material science and engineering,Nanjing university, Nanjing 210093, Jiangsu, China

Received date: 2018-06-25

  Revised date: 2018-07-12

  Online published: 2019-12-28

摘要

本文采用水热反应和高温将ZnCo2O4纳米活性材料原位生长在泡沫镍上,并通过控制前驱体溶液中NH4F的添加量,获得了ZnCo2O4四种不同的形貌. 以ZnCo2O4-2/NF为正极,AC/NF为负极,组装得到纽扣式非对称超级电容器ZnCo2O4-2/NF//AC/NF. 通过X射线衍射(XRD)、场发射扫描电镜(FESEM)、透射电镜(TEM)等方法对四种形貌ZnCo2O4的组成和结构进行了分析. 在三电极体系下对不同形貌的ZnCo2O4电极进行循环伏安、恒流充放电以及电化学阻抗测试. 结果表明,当NH4F的添加量为5 mmol时,所获得的薄纳米线团簇具有最高的面积比容量. 在电流密度为5 mA·cm-2下,比容量为2.77 F·cm-2. 基于正负两个电极的总面积,纽扣式非对称超级电容器的最大能量密度达到114.49 μWh·cm-2,相应的功率密度达到4001.59 μW·cm-2. 同时,功率密度达到24000 μW·cm-2时,对应的能量密度为80 μWh·cm-2.

本文引用格式

周岳珅 , 李 梦 , 吴 双 , 李照磊 , 高延敏 . ZnCo2O4电极材料的形貌调控制备与超级电容特性的研究[J]. 电化学, 2019 , 25(6) : 740 -748 . DOI: 10.13208/j.electrochem.180625

Abstract

In this work, hydrothermal reaction and high temperature were used to grow ZnCo2O4 active materials on Ni foam. The crystal stuctures and surface morphlogies of four samples were investigated by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM) and transmission electron microscopy (TEM). The electrochemical performances were characterized by cyclic voltammetry (CV)、galvanostatic charge/discharge (GCD) testing and electrochemical impedance spectroscopy (EIS) on an electrochemical station. It can be seen that active materials tended to form denser stuctures with an increasing amount of NH4F in the solution system and four different morphologies of ZnCo2O4  were obtained: nanoneedles, thin nanoneedles-clusters, thick nanoneedles-clusters, and lozenge-like bulks.ZnCo2O4 with the thin nanoneedles-clusters morphology held the best electrochemaical performance with the capacitance of 2.77 F·cm-2 at the current density of 5 mA·cm-2. A button asymmetric supercapacitor (ZnCo2O4 -2/NF//AC/NF) assembled with ZnCo2O4 -2/NF and AC/NF exhibited the excellent performance in energy storage. The button asymmetric supercapacitors achieved an energy density of 114.49 μWh·cm-2 at power density of 4001.59 μW·cm-2 and a power density of 24000 μW·cm-2 at energy density of 80 μWh·cm-2.

参考文献

[1]  Lukatskaya M R, Dunn B, Gogotsi Y. Multidimensional materials and device architectures for future hybrid energy storage[J]. Nature Communications, 2016, 7: 12647.
[2]  Simon P ,GoGotSi Y. Materials for electrochemical capacitors[J]. Nature Materials, 2008, 7(11): 845-854.
[3]  Wang F, Wu X, Yuan X, et al. Latest advances in supercapacitors: from new electrode materials to novel device designs[J]. Chemical Society Reviews, 2017, 46(22): 6816-6854.
[4]  Palacín M.R, Simon P, Tarascon J.M. Nanomaterials for electrochemical energy storage: the Good and the bad[J]. Acta Chimica Slovenica, 2016, 63(3): 417-423.
[5]  Shao W K(邵雯柯), Zhao L(赵雷), Wang Q F(王秋凡), et al. The study of asymmetric supercapacitor based on WO3/carbon cloth[J]. Journal of Electrochemistry(电化学), 2018, 24(1): 1-11.
[6]  Conway B.E, Birss V, Wojtowicz J. The role and utilization of pseudocapacitance for energy storage[J]. Journal of Power Sources,1997, 66: 1-14.
[7]  Conway B E. Transition from “supercapacitor” to “battery” behavior in electrochemical energy storage[J]. Journal of The Electrochemical Society, 1991, 138(6): 1539-1548.
[8]  Jiang C C, Cao Y K, Xiao G Y, et al. A review on the application of inorganic nanoparticles in chemical surface coatings on metallic substrates[J]. RSC Advances, 2017, 7(13): 7531-7539.
[9]  Liu B, Liu B Y, Wang Q F, et al. New energy storage option: toward ZnCo2O4 nanorods/nickel foam architectures for high-performance supercapacitors[J]. ACS Applied Materials & Interfaces, 2013, 5(20): 10011-10017 .
[10]  Yuvaraj S, Selvan R K, Lee Y S. An overview of AB2O4- and A2BO4-structured negative electrodes for advanced Li-ion batteries[J]. RSC Advances, 2016, 6(26): 21448-21474.
[11]  Yao L L, Zhang L L, Liu Y X, et al. MnCo2O4 and CoMn2O4 octahedral nanocrystals synthesized via a one-step co-precipitation process and their catalytic properties in benzyl alcohol oxidation[J]. CrystEngComm, 2016, 18(46): 8887-8897.
[12]  Wang H(万慧),Ying Z R(应宗荣), Liu X D(刘信东), et al. Preparation and electrochemical properties of attapulgite -supported nitrogen-doped carbon@NiCo2O4 composites for supercapacitors[J]. Journal of Electrochemistry(电化学), 2017, 23(1): 28-35.
[13]  Liu S, Hui K S, Kim K H, et al. Vertically stacked bilayer CuCo2O4/MnCo2O4 heterostructures on functionalized graphite paper for high-performance electrochemical capacitors[J]. Journal of Materials Chemistry A, 2016, 4(21): 8061-8071.
[14]  Okubo M, Hosono E, Kim J, et al. Nanosize effect on high-rate Li-ion intercalation in LiCoO2 electrode[J]. Journal of the American Chemical Society, 2007, 129(23): 7444-7452.
[15]  Gogotsi Y. What nano can do for energy storage[J]. ACS Nano, 2014, 8(6): 5369-5371.
[16]  Zhang G Q, Lou X W. General solution growth of mesoporous NiCo2O4 nanosheets on various conductive substrates as high-performance electrodes for supercapacitors[J]. Advanced Materials, 2013, 25(7): 976-979.
[17]  Yu Z Y, Cheng Z X, Tai Z X, et al. Tuning the morphology of CO3O4 on Ni foam for supercapacitor application[J]. RSC Advances, 2016, 6(51): 45783-45790.
[18]  Li M G, Yang W W, Huang Y R, et al. Hierarchical mesoporous CO3O4@ZnCo2O4 hybrid nanowire arrays supported on Ni foam for high-performance asymmetric supercapacitors[J]. Science China - Materials, 2018, 61(9): 1167-1176.
[19]  Gai Y S, Shang Y Y, Gong L Y, et al. A self-template synthesis of porous ZnCo2O4 microspheres for high-performance quasi-solid-state asymmetric supercapacitors[J]. RSC Advances, 2017, 7(2): 1038-1044.
[20]  Chuo H X, Gao H, Bu W B, et al. Rationally designed hierarchical ZnCo2O4/Ni(OH)2 nanostructures for high-performance pseudocapacitor electrodes[J]. Journal of Materials Chemistry A, 2014, 2(48): 20462-20469.
[21]  Yang D W, Wang Y Q, Wang Q Y, et al. Preparation and supercapacitive properties of hierarchical ZnCo2O4@Ni3S2 core/shell nanowire arrays on Ni foam[J]. Materials Letters, 2018, 213: 222-226.
[22]  Kang Q, Zhao J, Li X, et al. A single wire as all-inclusive fully functional supercapacitor[J]. Nano Energy, 2017, 32: 201-208.
[23]  Deka Boruah B, Maji A, Misra A. Synergistic effect in the heterostructure of ZnCo2O4 and hydrogenated zinc oxide nanorods for high capacitive response[J]. Nanoscale, 2017, 9(27): 9411-9420.

文章导航

/