[1] Lu J, Li L, Park J B, et al. Aprotic and aqueous Li-O
2 batteries[J]. Chemical Reviews, 2014, 114(11): 5611-5640.
[2] Christensen J, Albertus P, Sanchez-Carrera R S, et al. A critical review of Li-air batteries[J]. Journal of The Electrochemical Society, 2012, 159(2): R1-R30.
[3] Bruce P G, Freunberger S A, Hardwick L J, et al. Li-O
2 and Li-S batteries with high energy storage[J]. Nature Materials, 2012, 11(1): 19-29.
[4] Li H(李泓), Lv Y C(吕迎春). A review on electrochemical energy storage[J]. Journal of Electrochemistry(电化学), 2015, 21(5): 412-424.
[5] Li L, Chang Z W, Zhang X B. Recent rrogress on the development of metal-air batteries[J]. Advanced Sustainable Systems, 2017, 1(10): 1700036.
[6] Girishkumar G, Mccloskey B, Luntz A C, et al. Lithium-air battery: promise and challenges[J]. 2010, 1(14): 2193-2203. [7] Gittleson F S, Sekol R C, Doubek G, et al. Catalyst and electrolyte synergy in Li-O
2 batteries[J]. Physical Chemistry Chemical Physics, 2014, 16(7): 3230-3237.
[8] Lim H D, Lee B, Bae Y, et al. Reaction chemistry in rechargeable Li-O
2 batteries[J]. Chemical Society Reviews, 2017, 46(10): 2873-2888.
[9] Wang Y W, Wang B Z, Gu F, et al. Tuning electrochemical reactions in Li-O
2 batteries[J]. Nano Advances, 2016, 1(1): 17-24.
[10] Cao R, Lee J S, Liu M L, et al. Recent progress in non-precious catalysts for metal-air batteries[J]. Advanced Energy Materials, 2012, 2(7): 816-829.
[11] Lee D U, Xu P, Cano Z P, et al. Recent progress and perspectives on bi-functional oxygen electrocatalysts for advanced rechargeable metal-air batteries[J]. Journal of Materials Chemistry A, 2016, 4(19): 7107-7134.
[12] Zhang P, Zhao Y, Zhang X B. Functional and stability orientation synthesis of materials and structures in aprotic Li-O
2 batteries[J]. Chemical Society Reviews, 2018, 47(8): 2921-3004.
[13] Fu Y(付月), Wang J(王金), Yu H Y(于海洋), et al. Application of electrospinning in lithium-air batteries[J]. Journal of Electrochemistry(电化学), 2018, 24(1): 46-55.
[14] Xu S M, Liang X, Ren Z C, et al. Free-standing air cathodes based on 3D hierarchically porous carbon membranes: Kinetic overpotential of continuous macropores in Li-O
2 batteries[J]. Angewandte Chemie-International Edition, 2018, 23(57): 6825-6829.
[15] Gittleson F S, Ryu W H, Schwab M, et al. Pt and Pd catalyzed oxidation of Li
2O
2 and DMSO during Li-O
2 battery charging[J]. Chemical Communications, 2016, 52(39): 6605-6608.
[16] Chatterjee A, Or S W, Cao Y L. Transition metal hollow nanocages as promising cathodes for the long-term cyclability of Li-O
2 batteries[J]. Nanomaterials(Basel, Switzerland), 2018, 8(5): DOI: 10.3390/nano8050308.
[17] Chang Y Q, Dong S M, Ju Y H, et al. A carbon- and binder-free nanostructured cathode for high-performance nonaqueous Li-O
2 battery[J]. Advanced Science, 2015, 2(8): 1500092.
[18] Zhuo J L, Qing L Z, Yu W, et al. Recent progress in applying in situ/operando characterization techniques to probe the solid/liquid/gas interfaces of Li-O
2 batteries[J]. Small Methods, 2017, 1(7): 1700150.
[19] Zhou K B, Li Y D. Catalysis based on nanocrystals with well-defined facets[J]. Angewandte Chemie-International Edition, 2012, 51(3): 602-613.
[20] Xie X W, Shen W J. Morphology control of cobalt oxide nanocrystals for promoting their catalytic performance[J]. Nanoscale, 2009, 1(1): 50-60.
[21] Zhou K B, Wang X, Sun X M, et al. Enhanced catalytic activity of ceria nanorods from well-defined reactive crystal planes[J]. Journal of Catalysis, 2005, 229(1): 206-212.
[22] Xie X W, Li Y, Liu Z Q, et al. Low-temperature oxidation of CO catalysed by Co
3O
4 nanorods[J]. Nature, 2009, 458(7239): 746-749.
[23] Tian N, Zhou Z Y, Sun S G. Platinum metal catalysts of high-index surfaces: from single-crystal planes to electrochemically shape-controlled nanoparticles[J]. Journal of Physical Chemistry C, 2008, 112(50): 19801-19817.
[24] Nicholas J F. An atlas of models of crystal surfaces[M]. gordon & breach: New York, 1965.
[25] Xiao X L, Liu X F, Zhao H, et al. Facile shape control of Co
3O
4 and the effect of the crystal plane on electrochemical performance[J]. Advance Materials, 2012, 24(42): 5762-5766.
[26] Gao R, Zhu J Z, Xiao X L, et al. Facet-dependent electrocatalytic performance of Co
3O
4 for rechargeable Li-O
2 battery[J]. The Journal of Physical Chemistry C, 2015, 119(9): 4516-4523.
[27] Su D W, Dou S X, Wang G X. Single crystalline Co
3O
4 nanocrystals exposed with different crystal planes for Li-O
2 batteries[J]. Scientific Reports, 2014, 4: 5767.
[28] Song K, Cho E, Kang Y M. Morphology and active-site engineering for stable round-trip efficiency Li-O
2 batteries: a search for the most active catalytic site in Co3O4[J]. ACS Catalysis, 2015, 5(9): 5116-5122.
[29] Zhu J Z, Ren X D, Liu J J, et al. Unraveling the catalytic mechanism of Co
3O
4 for the oxygen evolution reaction in a Li-O
2 battery[J]. ACS Catalysis, 2014, 5(1): 73-81.
[30] Zheng Y P, Song K, Jung J, et al. Critical descriptor for the rational design of oxide-based catalysts in rechargeable Li-O
2 batteries: surface oxygen density[J]. Chemistry of Materials, 2015, 27(9): 3243-3249.
[31] Yan D F, Li Y X, Huo J, et al. Defect chemistry of nonprecious-metal electrocatalysts for oxygen reactions[J].Advance Materials, 2017, 29(48): 1606459.
[32] Casas-Cabanas M, Binotto G, Larcher D, et al. Defect chemistry and catalytic activity of nanosized Co
3O
4[J]. Chemistry of Materials, 2009, 21(9): 1939-1947.
[33] Jiang X D, Zhang Y P, Jiang J, et al. Characterization of oxygen vacancy associates within hydrogenated TiO
2: A positron annihilation study[J]. The Journal of Physical Chemistry C, 2012, 116(42): 22619-22624.
[34] Lu X, Li H. Fundamental scientific aspects of lithium batteries (II)—Defect chemistry in battery materials[J]. Energy Storage Science and Technology, 2013, 2(2): 157-164.
[35] Hong J H, Jin C H, Yuan J, et al. Atomic defects in two-eimensional materials: from single-atom spectroscopy to functionalities in opto-/electronics, nanomagnetism, and catalysis[J]. Advance Materials, 2017, 29(14): 1606434
[36] Chen C F, King G, Dickerson R M, et al. Oxygen-deficient BaTiO
3-x perovskite as an efficient bifunctional oxygen electrocatalyst[J]. Nano Energy, 2015, 13: 423-432.
[37] Cheng F Y, Zhang T R, Zhang Y, et al. Enhancing electrocatalytic oxygen reduction on MnO
2 with vacancies[J]. Angewandte Chemie-International Edition, 2013, 52(9): 2474-2477.
[38] Xu L, Jiang Q Q, Xiao Z H, et al. Plasma-engraved Co
3O
4 nanosheets with oxygen vacancies and high surface area for the oxygen evolution reaction[J]. Angewandte Chemie-
International Edition, 2016, 55(17): 5277-5281.
[39] Wang Y Y, Zhang Y Q, Liu Z J, et al. Layered double hydroxide nanosheets with multiple vacancies obtained by dry exfoliation as highly efficient oxygen evolution electrocatalysts[J]. Angewandte Chemie-International Edition, 2017, 56(21): 5867-5871.
[40] Gao R, Liu L, Hu Z B, et al. The role of oxygen vacancies in improving the performance of CoO as a bifunctional cathode catalyst for rechargeable Li-O
2 batteries[J]. Journal of Materials Chemistry A, 2015, 3(34): 17598-17605.
[41] Gao R, Li Z Y, Zhang X L, et al. Carbon-dotted defective CoO with oxygen vacancies: A synergetic design of bifunctional cathode catalyst for Li-O
2 batteries[J]. ACS Catalysis, 2015, 6(1): 400-406.
[42] Oh S H, Black R, Pomerantseva E, et al. Synthesis of a metallic mesoporous pyrochlore as a catalyst for lithium-O
2 batteries[J]. Nature Chemistry, 2012, 4(12): 1004-
1010.
[43] Kang J, Kim J, Lee S, et al. Breathable carbon-free electrode: black TiO
2 with hierarchically ordered porous structure for stable Li-O
2 battery[J]. Advanced Energy Materials, 2017, 7(19): 1700814.
[44] Zhang S P, Wang G, Jin J, et al. Self-catalyzed decomposition of discharge products on the oxygen vacancy sites of MoO
3 nanosheets for low-overpotential Li-O2 batteries[J]. Nano Energy, 2017, 36: 186-196.
[45] Wang J, Gao R, Zhou D, et al. Boosting the electrocatalytic activity of Co
3O
4 nanosheets for a Li-O
2 battery through modulating inner oxygen vacancy and exterior Co
3+/Co
2+ ratio[J]. ACS Catalysis, 2017, 7(10): 6533-6541.
[46] Qu L T, Liu Y, Baek J B, et al. Nitrogen-doped graphene as efficient metal-free electrocatalyst for oxygen reduction in fuel cells[J]. ACS Nano, 2010, 4(3): 1321-1326.
[47] Zhang J T, Zhao Z H, Xia Z H, et al. A metal-free bifunctional electrocatalyst for oxygen reduction and oxygen evolution reactions[J]. Nature Nanotechnology, 2015, 10(5): 444-452.
[48] Sun B, Chen S Q, Liu H, et al. Mesoporous carbon nanocube architecture for high-performance lithium-oxygen batteries[J]. Advanced Functional Materials, 2015, 25(28): 4436-4444.
[49] Park J B, Lee J, Yoon C S, et al. Ordered mesoporous carbon electrodes for Li-O
2 batteries[J]. ACS Applied Materials & Interfaces, 2013, 5(24): 13426-13431.
[50] Guo Z, Zhou D, Dong X, et al. Ordered hierarchical mesoporous/macroporous carbon: a high-performance catalyst for rechargeable Li-O
2 batteries[J]. Advanced Materials, 2013, 25(39): 5668.
[51] Thotiyl M M O, Freunberger S A, Peng Z, et al. The carbon electrode in nonaqueous Li-O
2 cells[J]. Journal of the American Chemical Society, 2013, 135(1): 494-500.
[52] Zhang X L, Gao R, Li Z Y, et al. Enhancing the performance of CoO as cathode catalyst for Li-O
2 batteries through confinement into bimodal mesoporous carbon[J]. Electrochimica Acta, 2016, 201: 134-141.
[53] Gao R, Zhou Y, Liu X F, et al. N-Doped defective carbon layer encapsulated W
2C as a multifunctional cathode catalyst for high performance Li-O
2 Battery[J]. Electrochimica Acta, 2017, 245: 430-437.
[54] Xing Y, Yang Y, Chen R J, et al. Strongly coupled carbon nanosheets/molybdenum carbide nanocluster hollow nanospheres for high-performance aprotic Li-O
2 battery[J]. Small, 2018,14(19): UNSP 1704366.
[55] Wang J C, Kondrat S A, Wang Y Y, et al. Au-Pd Nanoparticles dispersed on composite titania/rraphene oxide-supports as a highly active oxidation catalyst[J]. ACS Catalysis, 2015, 5(6): 3575-3587.
[56] Wang N, Sun Q M, Bai R S, et al. In situ confinement of ultrasmall Pd clusters within nanosized silicalite-1 zeolite for highly efficient catalysis of hydrogen generation[J]. Journal of the American Chemical Society, 2016, 138(24): 7484-7487.
[57] Lu Y C, Xu Z C, Gasteiger H A, et al. Platinum-gold nanoparticles: a highly active bifunctional electrocatalyst for rechargeable lithium-air batteries[J]. Journal of the American Chemical Society, 2010, 132(35): 12170-12171.
[58] Lei Y, Lu J, Luo X Y, et al. Synthesis of porous carbon supported palladium nanoparticle catalysts by atomic layer deposition: Application for rechargeable lithium-O
2 battery[J]. Nano Letters, 2013, 13(9): 4182-4189.
[59] Jeong Y S, Park J B, Jung H G, et al. Study on the catalytic activity of noble metal nanoparticles on reduced graphene oxide for oxygen evolution reactions in lithium-air batteries[J]. Nano Letters, 2015, 15(7): 4261-4268.
[60] Lu J, Lee Y J, Luo X Y, et al. A lithium-oxygen battery based on lithium superoxide[J]. Nature, 2016, 529(7586): 377-382.
[61] Fan W G, Wang B Z, Guo X X, et al. Nanosize stabilized Li-deficient Li
2-xO
2 through cathode architecture for high performance Li-O
2 batteries[J]. Nano Energy, 2016, 27: 577-586.
[62] Zhang X L, Gong Y D, Li S Q, et al. Porous perovskite La
0.6Sr
0.4Co
0.8Mn
0.2O
3 nanofibers loaded with RuO
2 nano-sheets as an efficient and durable bifunctional catalyst for rechargeable Li-O2 batteries[J]. ACS Catalysis, 2017, 7(11): 7737-7747.
[63] Gong Y D, Zhang X L, Li Z P, et al. Perovskite La
0.6Sr
0.4Co
0.2Fe
0.8O
3 nanofibers decorated with RuO
2 nanoparticles as an efficient bifunctional cathode for rechargeable Li-O
2 batteries[J]. ChemNanoMat, 2017, 3(7): 485-490.
[64] Gao R, Yang Z Z, Zheng L R, et al. Enhancing the catalytic activity of Co
3O
4 for Li-O
2 batteries through the synergy of surface/interface/doping engineering[J]. ACS Catalysis, 2018, 8(3): 1955-1963.
[65] Gao R, Liang X, Yin P G, et al. An amorphous LiO
2-based Li-O
2 battery with low overpotential and high rate capability[J]. Nano Energy, 2017, 41: 535-542.
[66] Zhu Z, Kushima A, Yin Z Y, et al. Anion-redox nanolithia cathodes for Li-ion batteries[J]. Nature Energy, 2016, 1: 16111.