欢迎访问《电化学(中英文)》期刊官方网站,今天是
研究论文

锂离子电池高镍正极材料掺铝的作用及掺铝方法的研究

  • 王丹凤 ,
  • 李益孝 ,
  • 王伟立 ,
  • 杨 勇
展开
  • 厦门大学化学化工学院,福建 厦门 361005

收稿日期: 2018-03-28

  修回日期: 2018-04-23

  网络出版日期: 2019-12-28

基金资助

福建省科技重大专项 (No. 2014HZ0002-1)、福建省科技创新领军人才项目资助

Effects of Al-Doping on Properties of Ni-Rich Cathode Materials Employing Different Aluminum Sources

  • WANG Dan-feng ,
  • LI Yi-xiao ,
  • WANG Wei-li ,
  • YANG Yong
Expand
  • College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, Fujian, China

Received date: 2018-03-28

  Revised date: 2018-04-23

  Online published: 2019-12-28

摘要

为了探究铝对高镍层状氧化物在结构、形貌及性能方面的影响,本文采用两种不同的方式掺铝以制备NCA正极材料 (LiNi0.8Co0.15Al0.05O2):一是固相法即将共沉淀合成的NC前驱体(Ni0.84Co0.16(OH)2)在混锂烧结过程混入铝源(纳米Al2O3或Al(NO3)3);二是共沉淀法即直接在合成前驱体过程中混入铝源(Al2(SO4)3或NaAlO2)即合成NCA前驱体(Ni0.8Co0.15Al0.05(OH)2.05)后再混锂烧结. 结果表明,掺铝能够降低阳离子混排程度、维持层状结构的稳定性,改善材料在充放电循环过程的放电电压及中值电压大幅下降的情况,提高其循环性能. 其中以NaAlO2为铝源合成NCA前驱体所制备的NCA材料性能最优:在3.0 ~ 4.3 V充放电区间,0.1C倍率下首圈放电比容量达198 mAh·g-1,首次库仑效率可达94.6%,1C倍率下循环200圈后容量保持率达70%.

本文引用格式

王丹凤 , 李益孝 , 王伟立 , 杨 勇 . 锂离子电池高镍正极材料掺铝的作用及掺铝方法的研究[J]. 电化学, 2019 , 25(6) : 660 -668 . DOI: 10.13208/j.electrochem.180328

Abstract

In order to investigate the effects of Al-doping on the structure, morphology and electrochemical performance of Ni-rich layered oxides, the NCA cathode materials with a nominal chemical formula of LiNi0.8Co0.15Al0.05O2 were prepared by two methods with different aluminum sources. One was the solid phase method: the precursor (Ni0.84Co0.16(OH)2) prepared by co-precipitation was mixed with lithium and aluminum source (nano-Al2O3 or Al(NO3)3) thoroughly, and calcined at 780 ℃ for 15 h under an oxygen atmosphere. The other was the co-precipitation method: the NCA precursor (Ni0.8Co0.15Al0.05(OH)2.05) was synthesized by co-pre- cipitation method employing either Al2(SO4)3 or NaAlO2 as an aluminum source, and the NCA precursor was then mixed with lithium source and sintered at 780 ℃ for 15 h under an oxygen atmosphere. The results showed that Al-doping reduced the degree of cation mixing and maintained the stability of the layered structure, thereby reducing the voltage drop and improving its cycle performance. The NCA material prepared by co-precipitation method employing NaAlO2 as the aluminum source revealed the morphology of dense microspheres with a uniform size distribution and a well-layered structure of low Ni2+/Li+ mixing, acheving the best performance. The as-prepared NCA cathode material delivered a high discharge capacity (198 mAh·g-1 at 0.1C) corresponding to 94.6% coulombic efficiency and good cycle stability (a capacity retention of 70% after 200 cycles at 1C) between 3.0 V and 4.3 V.

参考文献

[1]  Nitta N, Wu F X, Lee J T, et al. Li-ion battery materials: present and future[J]. Materials Today, 2015,18(5): 252-264.
[2]  Li W D, Song B H, Manthiram A. High-voltage positive electrode materials for lithium-ion batteries[J]. Chemical Society Reviews, 2017,46(10): 3006-3059.
[3]  Lee W, Muhammad S, Kim T, et al. New insight into Ni-rich layered structure for next-generation Li rechargeable batteries[J]. Advanced Energy Materials, 2017: 1701788.
[4]  Makimura Y, Sasaki T, Nonaka T, et al. Factors affecting cycling life of LiNi0.8Co0.15Al0.05O2 for lithium-ion batteries[J]. Journal of Materials Chemistry A, 2016,4(21): 8350-8358.
[5]  Mohanty D, Dahlberg K, King D M, et al. Modification of Ni-rich FCG NMC and NCA cathodes by atomic layer deposition: preventing surface phase transitions for high-voltage lithium-ion batteries[J]. Scientific Reports, 2016, 6: 26532.
[6]  Muto S, Tatsumi K, Kojima Y, et al. Effect of Mg-doping on the degradation of LiNiO2-based cathode materials by combined spectroscopic methods[J]. Journal of Power Sources, 2012, 205: 449-455.
[7]  Liang C P, Kong F T, Longo R C, et al. Site-dependent multicomponent doping strategy for Ni-rich LiNi1-2yCoyMnyO2(y = 1/12) cathode materials for Li-ion batteries[J]. Journal of Materials Chemistry A, 2017, 5(48): 25303-25313.
[8]  Dixit M, BorisMarkovsky, Aurbach D, et al. Unraveling the effects of Al doping on the electrochemical properties of LiNi0.5Co0.2Mn0.3O2 using first principles[J]. Journal of The Electrochemical Society, 2017, 164(1): A6359-A6365.
[9]  Chen C H, Liu J, Stoll M E, et al. Aluminum-doped lithium nickel cobalt oxide electrodes for high-power lithium-ion batteries[J]. Journal of Power Sources, 2004, 128(2): 278-285.
[10]  Hoang K, Johannes M. Defect physics and chemistry in layered mixed transition metal oxide cathode materials: (Ni, Co, Mn) vs (Ni, Co, Al)[J]. Chemistry of Materials, 2016, 28(5): 1325-1334.
[11]  Ju S H, Jang H C, Kang Y C. Al-doped Ni-rich cathode powders prepared from the precursor powders with fine size and spherical shape[J]. Electrochimica Acta, 2007, 52(25): 7286-7292.
[12]  Kim Y, Kim D. Synthesis of high-density nickel cobalt aluminum hydroxide by continuous coprecipitation method[J]. ACS Applied Materials & Interfaces, 2012, 4(2): 586-589.
[13]  Li Y, Xu R, Ren Y, et al. Synthesis of full concentration gradient cathode studied by high energy X-ray diffraction[J]. Nano Energy, 2016, 19: 522-531.
[14]  Zhou P F, Meng H J, Zhang Z, et al. Stable layered Ni-rich LiNi0.9Co0.07Al0.03O2 microspheres assembled with nanoparticles as high-performance cathode materials for lithiumion batteries[J]. Journal of Materials Chemistry A, 2017, 5(6): 2724-2731.
[15]  Jiang Z J(蒋志军), Zhang Y L(张亚莉), Wang Q(王乾), et al. Continuous synthesis and condition exploration of precursor Ni1/3Co1/3Mn1/3(OH)2 ternary cathode material[J]. Journal of Electrochemistry(电化学), 2016, 22(5): 528-534.
[16]  Guan X Y(关小云), Hong C Y(洪朝钰), Zhu J P(朱建平), et al. Synthesis and electrochemical properties of nickel-rich cathode material LiNi0.6Co0.2Mn0.2O2 with high initial coulombic efficiency[J]. Journal of Electrochemistry(电化学), 2018, 24(1): 56-62.
[17]  Liu W M, Hu G R, Peng Z D, et al. Synthesis of spherical LiNi0.8Co0.15Al0.05O2 cathode materials for lithium-ion batteries by a co-oxidation-controlled crystallization method[J]. Chinese Chemical Letters, 2011, 22(9): 1099-1102.
[18]  Zhou F, Zhao X M, van Bommel A, et al. Coprecipitation synthesis of NixMn1-x(OH)2 mixed hydroxides[J]. Chemistry of Materials, 2010, 22(3): 1015-1021.
[19]  Kim J. Synthesis and electrochemical behavior of Li[Li0.1Ni0.35-x/2CoxMn0.55-x/2]O2 cathode materials[J]. Solid State Ionics, 2003, 164(1/2): 43-49.
[20]  Zhu X M, Wang Y X, Shang K H, et al. Improved rate capability of the conducting functionalized FTO-coated Li[Li0.2Mn0.54Ni0.13Co0.13]O2 cathode material for Li-ion batteries[J]. Journal of Materials Chemistry A, 2015, 3(33): 17113-17119.
[21]  Liang M, Song D W, Zhang H Z, et al. Improved performances of LiNi0.8Co0.15Al0.05O2 material employing NaAlO2 as a new aluminum source[J]. ACS Applied Materials & Interfaces, 2017, 9(44): 38567-38574.
[22]  Hwang S, Chang W, Kim S M, et al. Investigation of changes in the surface structure of LixNi0.8Co0.15Al0.05O2 cathode materials induced by the initial charge[J]. Chemistry of Materials, 2014, 26(2): 1084-1092.
[23]  Bettge M, Li Y, Gallagher K, et al. Voltage fade of layered oxides: its measurement and impact on energy density[J]. Journal of The Electrochemical Society, 2013, 160(11): A2046-A2055.
[24]  Watanabe S, Kinoshita M, Hosokawa T, et al. Capacity fade of LiAlyNi1-x-yCoxO2 cathode for lithium-ion batteries during accelerated calendar and cycle life tests (surface analysis of LiAlyNi1-x-yCoxO2 cathode after cycle tests in restricted depth of discharge ranges)[J]. Journal of Power Sources, 2014, 258: 210-217.
[25]  Huang Y Q, Huang Y H, Hu X L. Enhanced electrochemical performance of LiNi0.8Co0.15Al0.05O2 by nanoscale surface modification with Co3O4[J]. Electrochimica Acta, 2017, 231: 294-299.

文章导航

/