欢迎访问《电化学(中英文)》期刊官方网站,今天是
电镀与表面精饰近期研究专辑( 哈尔滨工业大学 安茂忠教授主编)

不同羧酸对钒改性硅酸铁锂结构性能的影响

  • 魏雪霞 ,
  • 黄嘉祺 ,
  • 刘施阳 ,
  • 程璇 ,
  • 张颖
展开
  • 1. 厦门大学材料学院,材料科学与工程,厦门 361005; 2. 福建省特种先进材料重点实验室(厦门大学),厦门 361005

收稿日期: 2017-03-16

  修回日期: 2017-05-05

  网络出版日期: 2017-05-12

基金资助

获国家自然科学基金(No. 11372263)资助

Effects of Carboxylic Acids on Structure and Performance of 10% Vanadium Modified Li2FeSiO4/C Composites

  • WEI Xue-xia ,
  • HUANG Jia-qi ,
  • LIU Shi-yang ,
  • CHENG Xuan ,
  • ZHANG Ying
Expand
  • 1. Department of Materials Science and Engineering, College of Materials, Xiamen University, Xiamen 361005, Fujian, China; 2. Fujian Key Laboratory of Advanced Materials (Xiamen University), Xiamen 361005, Fujian, China

Received date: 2017-03-16

  Revised date: 2017-05-05

  Online published: 2017-05-12

Supported by

Supported by The National Natural Science Foundation of China (No. 11372263)

摘要

采用溶胶-凝胶法得到前驱体,再通过固相烧结法制备10%钒改性碳包覆硅酸铁锂正极材料,系统考察了三种羧酸(即柠檬酸、乙酸、草酸)添加剂对10%钒改性碳包覆硅酸铁锂正极材料的相结构、表面形貌、界面特性和电化学性能的影响. 结果表明,三种羧酸添加剂制备的材料都能得到结晶性较好的P21和Pmn21混合相结构,主要杂质相为铁,此外还存在少量偏硅酸锂杂质. 以柠檬酸、乙酸、草酸为添加剂合成的10%钒改性碳包覆硅酸铁锂在0.1C倍率下的首次放电容量分别为144.7、140.3和168.7 mAh•g-1,最大容量分别为155.9、145.3和172.0 mAh•g-1出现在第7、15和2周,经50周循环后容量保持率分别为68.2%、76.7%和59.4%. 柠檬酸单位分子内含有三个羧酸根,以柠檬酸为添加剂合成的材料残留碳含量最高为7.8%,促进了铁杂质的形成,较大的电荷传质电阻(147 Ω)使得库伦效率较低,循环性能较差。相反,乙酸分子中只含有一个羧酸根,以乙酸为添加剂合成的材料中铁杂质相最少,电荷传质电阻(73 Ω) 最低,导致容量保持率最高,循环性能最好. 草酸分子中含有两个羧酸根,以草酸为添加剂合成的材料形成较大的花状形貌,得到合适的残留碳含量(6%),极大地提高了锂离子迁移率(3.85×10-15 cm2•s-1),从而取得超过一个锂离子(1.05)的脱嵌.

本文引用格式

魏雪霞 , 黄嘉祺 , 刘施阳 , 程璇 , 张颖 . 不同羧酸对钒改性硅酸铁锂结构性能的影响[J]. 电化学, 2018 , 24(1) : 72 -80 . DOI: 10.13208/j.electrochem.170316

Abstract

The carbon coated 10% vanadium modified lithium iron silicate (Li2Fe0.9V0.1SiO4/C) composites were prepared by sol-gel method to form precursor and followed by solid state reaction. Effects of different carboxylic acids, namely, citric acid, acetic acid and oxalic acid, on the crystal structures, surface morphologies, interfacial characteristics and electrochemical properties of the composites were systematically investigated. It was found that a mixed P21 and Pmn21 phase was formed with the major impure phase of iron (Fe) and minor impurity of lithium silicate (Li2SiO3). The initial discharge capacities of 144.7, 140.3 and 168.7 mAh•g-1 were achieved at 0.1C and room temperature, while the maximum capacities of 155.9, 145.3 and 172.0 mAh•g-1 at the 7th, 15th and 2nd cycles with the capacity retention values of 68.2%, 76.7% and 59.4% were obtained upon 50 cycles for the uses of citric acid, acetic acid and oxalic acid, respectively. Consisting of three carboxyl functional groups, the citric acid based composite contained higher amount of 7.8% residual carbon, the formation of impure Fe phase was promoted, and the larger charge-transfer resistance of 147 Ω was obtained, leading to lower coulombic efficiency and poorer cycle performance. On the contrast, the acetic acid based composite containedone carboxyl functional group only, resulted in the least amount of Fe and the smaller charge-transfer resistance of 73 Ω ,which showed the best cycle performance with the largest capacity retention. However,  carrying two carboxyl functional groups the oxalic acid based composite led to 6.0% residual carbon and larger flower-like morphology, which slightly improved the lithium ion diffusion coefficient, achieving more than one lithium ion (1.05) per formula unit intercalation.

参考文献

[1]       Li Y S, Cheng X, Zhang Y. Achieving High Capacity by Vanadium Substitution into Li2FeSiO4 [J]. Journal of the Electrochemical Society, 2012, 159(2): A69-A74.

[2]       Li Y S, Cheng X, Zhang Y. On the delithiation mechanism of Li2FeSiO4−ySy compounds: A first-principles investigation [J]. Electrochimica Acta, 2013, 112(0): 670-677.

[3]    Wei X X(魏雪霞), Yang H(杨洪), Cheng X(程璇), et al. Recent progress in vanadium modified polynionic compounds as cathode materials for lithium ion batteries[J]. Journal of Xiamen University: Natural Science(厦门大学学报:自然科学版), 2015, 54(5):643-651.

[4]    Zhang L L, Sun H B, Yang X L, et al. Study on electrochemical performance and mechanism of V-doped Li2FeSiO4 cathode material for Li-ion batteries[J]. Electrochimica Acta, 2015, 152(0): 496-504.

[5]       Zhang Z, Liu X, Wu Y, et al. Synthesis and Characterization of Spherical Li2Fe0.5V0.5SiO4/C Composite for High-Performance Cathode Material of Lithium-Ion Secondary Batteries [J]. Journal of the Electrochemical Society, 2015, 162(4): A737-A742.

[6]   Yang H(杨洪), Zhang Y(张颖), Cheng X(程璇). Effect of vanadium substitution on structure of Li2FeSiO4/C composites [J]. Journal of electrochemistry(电化学), 2013, 19(6): 565-570.

[7]   Kumar A, Jayakumar O D, Naik V M, et al. Improved electrochemical properties of solvothermally synthesized Li2FeSiO4/C nanocomposites: A comparison between solvothermal and sol-gel methods [J]. Solid State Ionics, 2016, 294:15-20.

[8]    Feng Y, He T, Alonso-Vante N. Oxygen reduction reaction on carbon-supported CoSe2 nanoparticles in an acidic medium[J]. Electrochimica Acta, 2009, 54(22): 5252-5256.

[9]       Fu R S, Li Y S, Yang H, et al. Improved Performance of Li2FeSiO4/C Composite with Highly Rough Mesoporous Morphology [J]. Journal of the Electrochemical Society, 2013, 160(5): A3048-A3053.

[10]     Zhang B, Nieuwoudt M, Easteal A J. Sol-gel route to nanocrystalline lithium metasilicate particles [J]. Journal of the American Ceramic Society, 2008, 91(6): 1927-1932.

[11]     Deng C, Zhang S, Gao Y, et al. Regeneration and characterization of air-exposed Li2FeSiO4 [J]. Electrochimica Acta, 2011, 56(21): 7327-7333.

[12]     Ortiz-Landeros J, Gomez-Yanez C, Pfeiffer H. Surfactant-assisted hydrothermal crystallization of nanostructured lithium metasilicate (Li2SiO3) hollow spheres: II-Textural analysis and CO2-H2O sorption evaluation [J]. Journal of Solid State Chemistry, 2011, 184(8): 2257-2262.

[13]     Lee S, Cha Y C, Hwang H J, et al. The effect of pH on the physicochemical properties of silica aerogels prepared by an ambient pressure drying method [J]. Materials Letters, 2007, 61(14-15):3130-3133.

[14]   Zhuang Q C(庄全超), Chen Z F(陈作锋), Dong Q F(董全峰), et al. Studies of the first lithiation of graphite materials by electrochemical impedance spectroscopy[J]. Chinese Science Bulletin(科学通报), 2006, 51(9): 1055-1059.

[15]   Itagaki M, Kobari N, Yotsuda S, et al. LiCoO2 electrode/electrolyte interface of Li-ion rechargeable batteries investigated by in situ electrochemical impedance spectroscopy [J]. Journal of Power Sources, 2005,148: 78-84.

[16]   Liu H, Cao Q, Fu L J, et al. Doping effects of zinc on LiFePO4 cathode material for lithium ion batteries [J]. Electrochemistry Communications, 2006, 8(10): 1553-1557.

[17]   Zhang S, Deng C, Fu B, et al. Doping effects of magnesium on the electrochemical performance of Li2FeSiO4 for lithium ion batteries [J]. Journal of Electroanalytical Chemistry, 2010, 644(2): 150-154.

[18]  Biesinger M C, Payne B P, Grosvenor A P, et al. Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Cr, Mn, Fe, Co and Ni [J]. Applied Surface Science, 2011, 257(7): 2717-2730.

[19]  Biesinger M C, Lau L W M, Gerson A R, et al. Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Sc, Ti, V, Cu and Zn [J]. Applied Surface Science, 2010, 257(3): 887-898.

文章导航

/