欢迎访问《电化学(中英文)》期刊官方网站,今天是
有机电化学及电化学工业近期研究专辑(华东理工大学张新胜教授、北京化工大学曾程初教授主编)

IrSnOx电极制备及其在电氧化制备2,5-二氯苯酚中的应用

  • 马翔宇 ,
  • 涂序国 ,
  • 何瑞楠 ,
  • 陈亚 ,
  • 朱桂生 ,
  • 邵守言 ,
  • 陈松
展开
  • 1. 江苏大学 化学化工学院,镇江 212013; 2. 盐城工学院 化学化工学院,盐城 224051; 3. 南京工业大学先进材料研究院,南京 210009; 4. 江苏索普(集团)有限公司

收稿日期: 2016-11-07

  修回日期: 2017-04-06

  网络出版日期: 2017-04-14

基金资助

江苏省自然科学基金项目(BK20141261)、江苏省产学研前瞻性项目(BY2015057-35)、盐城市科技项目(YKA201219)资助

Preparations and Applications of IrSnOx Electrode in Electrochemical Synthesis of 2,5-dichlorophenol

  • MA Xiang-yu ,
  • TU Xu-guo ,
  • HE Rui-nan ,
  • CHEN Ya ,
  • ZHU Gui-sheng ,
  • SHAO Shou-yan ,
  • CHEN Song
Expand
  • 1.Department of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu, China; 2. Department of Chemistry and Chemical Engineering, Yancheng Institute of Technology, Yancheng 224051 Jiangsu, China; 3. Advanced Materials Research Institute, Nanjing University of Technology, Nanjing 210009 China; 4. Jiangsu Sopo Co. Ltd, Zhenjiang 212013, Jiangsu, China

Received date: 2016-11-07

  Revised date: 2017-04-06

  Online published: 2017-04-14

摘要

采用热分解法制备钛基IrSnOx电极,并将电极应用于电催化氧化对二氯苯制备2,5-二氯苯酚,探索了绿色高效的电合成途径. 结果表明,电极表面存在裂纹,中间层Sn:Sb为94:6时裂纹较少,强化寿命较长;电极对对二氯苯电氧化具有较好的循环伏安响应;IrSnOx电极电催化氧化对二氯苯所得产物主要为2,5-二氯苯酚、1,2,4-三氯苯、对氯苯酚等,其中2,5-二氯苯酚选择性达93%,产率57%,显著优于以析氯电极、析氧电极、铂为阳极时,2,5-二氯苯酚的选择性89%、27%、87%和30%、15%、49%的产率,体现了优良的电催化氧化性能.

本文引用格式

马翔宇 , 涂序国 , 何瑞楠 , 陈亚 , 朱桂生 , 邵守言 , 陈松 . IrSnOx电极制备及其在电氧化制备2,5-二氯苯酚中的应用[J]. 电化学, 2017 , 23(3) : 327 -331 . DOI: 10.13208/j.electrochem.161050

Abstract

The electrodes of titanium based iridium tin oxides (IrSnOx) have been prepared by traditional thermal decomposition method and further applied to the electrosynthsis of 2,5-dichlorophenol in order to explore a green and high efficient synthesis route. The results showed that the electrode surface existed apparent cracks, while the intermediate layer prepared with Sn:Sb=94:6 existed less cracks and longer life time. The main products of the electrolytic reaction were 2,5-dichlorophenol, p-chlorophenol, and 1,2,4-trichlorobenzene. The electrosynthsis yield of 2,5-dichlorophenol reached 57% and the selectivity of 2,5-dichlorophenol was as high as 93% by using the IrSnOx as an anode, which is obviously better than those obtained by using the commercial chlorine evolution electrode, oxygen evolution electrode and Pt electrode as anodes. The selectivity of 89%, 27%, 87% and the yields of 30%, 15%, 49% were obtained by the commercial chlorine evolution electrode, oxygen evolution electrode and Pt electrode, respectively. The excellent electrocatalytic oxidation performance of the IrSnOx electrode was achieved.

参考文献

[1] Wang Y C(王玉灿), Ma Y(马瑛), Meng M Y(孟明扬), et al. A Study on the Preparation of 2,5-Dichlorophenol [J]. Dyestuffs and Coloration(染料与染色), 2012, 49(3): 15-6.

[2] Lu Z X(陆志勋), Lv Y W(吕延文). A Novel Synthesis Method of 2,5-Dichlorophnol [J]. Chemical Production and Technology(化学生产与技术), 2010, 17(2): 16-7.

[3] Zhu X Y(朱兴一), Chen Y Y(陈媛媛), Li F(李锋), et al. Continuous Synthesis of 2,5-Dichlorophenol [J]. Chinese Journal of Synthetic Chemistry(合成化学), 2014, 22(1): 88-90.

[4] Hans J. Contributions of organic electrosynthesis to green chemistry [J]. Comptes Rendus Chimie, 2011, 14(7): 745-65.

[5] Pletcher D. Organic Electrosynthesis [M]. Springer Netherlands, 2014.

[6] Pitner W R, Seddon K R, Stack K M, et al. Electrosynthesis of organic compounds [M]. US. 2011.

[7] Fujimoto K, Tokuda Y, Maekawa H, et al. Selective and one-pot formation of phenols by anodic oxidation [J]. Tetrahedron, 1996, 52(11): 3889-96.

[8] Chatzisymeon E, Dimou A, Mantzavinos D, et al. Electrochemical oxidation of model compounds and olive mill wastewater over DSA electrodes: 1. The case of Ti/IrO2 anode [J]. Journal of Hazardous Materials, 2009, 167(1-3):268-274.

[9] Miyata M, Ihara I, Yoshid G, et al. Electrochemical oxidation of tetracycline antibiotics using a Ti/IrO2 anode for wastewater treatment of animal husbandry [J]. Water Science & Technology A Journal of the International Association on Water Pollution Research, 2011, 63(3): 456-61.

[10] Zaviska F, Drogui P, Blais J F, et al. Electrochemical Oxidation of Chlortetracycline Using Ti/IrO2 and Ti/PbO2 Anode Electrodes: Application of Experimental Design Methodology [J]. Journal of Environmental Engineering, 2013, 139(6): 810-21.

[11] Li X, Guo Z, Du L, et al. Decolourization and degradation of C.I. Acid Red 73 by anodic oxidation and the synergy technology of anodic oxidation coupling nanofiltration [J]. Electrochimica Acta, 2013, 97(5): 150-9.

[12] Jara C C, Salazar-Banda G R, Arratia R S, et al. Improving the stability of Sb doped Sn oxides electrode thermally synthesized by using an acid ionic liquid as solvent [J]. Chemical Engineering Journal, 2011, 171(3): 1253-62.

[13] Samet Y, Agengui L, Abdelh D R. Electrochemical degradation of chlorpyrifos pesticide in aqueous solutions by anodic oxidation at boron-doped diamond electrodes [J]. Chemical Engineering Journal, 2010, 161(1–2): 167-72.

[14] Xu L, Xin Y, Wang J. A comparative study on IrO2–Ta2O5 coated titanium electrodes prepared with different methods [J]. Electrochimica Acta, 2009, 54(6): 1820-5.

[15] Malpass G R P, Neves R S, Motheo A J. A comparative study of commercial and laboratory-made Ti/Ru0.3Ti 0.7O2, DSA®; electrodes:“In situ” and “ex situ” surface characterisation and organic oxidation activity[J]. Electrochimica Acta, 2006, 52(3):936-944.

[16] Kong J T, Shi S Y, Zhu X P, et al. Effect of Sb dopant amount on the structure and electrocatalytic capability of Ti/Sb-SnO2 electrodes in the oxidation of 4-chlorophenol [J]. Journal of Environmental Sciences, 2007, 19(11): 1380-6.

[17] Zhang Z, Sun Q Q, Si Y P. Degradation Properties of Ti/Sb-SnO2 Electrodes Containing Different Intermediate Layers for Phenol [J]. Materials Science Forum, 2013, 743-744: 420-6.

[18] Huang Y C(黄永昌), Ye H J(叶慧娟), Zhang Y H(章燕豪). A Survey on the Functional Mechanism of Ti-SnO2 Layer in a Ti-supported Lead Dioxide Electrode [J]. Journal of Shanghai Jiaotong University(上海交通大学学报), 1982(4): 28-37.

文章导航

/