欢迎访问《电化学(中英文)》期刊官方网站,今天是
界面电化学近期研究专辑(厦门大学 毛秉伟教授)

壳层厚度可调控的Ag@Pd@Pt纳米粒子的合成和甲酸电催化研究

  • 林晓东 ,
  • 陈杜宏 ,
  • 田中群
展开
  • 厦门大学固体表面物理化学国家重点实验室,能源材料化学协同创新中心,化学与化工学院化学系,福建 厦门 361005

收稿日期: 2016-09-23

  修回日期: 2016-11-28

  网络出版日期: 2016-12-02

基金资助

国家自然科学基金项目(No. 2011YQ030124)资助

Syntheses of Ag@Pd@Pt Nanoparticles with Tunable Shell Thickness for Electrochemical Oxidation of Formic Acid

  • LIN Xiao-dong ,
  • CHEN Du-hong ,
  • TIAN Zhong-qun
Expand
  • State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, Fujian, China

Received date: 2016-09-23

  Revised date: 2016-11-28

  Online published: 2016-12-02

摘要

在本课题组研究55 nm Au@Pd@Pt对甲酸电催化效果基础上,我们采用Ag取代Au制备55 nm Ag@Pd@Pt纳米粒子以降低催化剂的成本,并对甲酸的电催化行为进行研究. 研究表明:少量Pt的存在可大幅度提高催化剂的活性,当Pt的覆盖度为0.5 单原子层(ML)时,起始氧化电位最为靠前,氧化峰电流最大,这与Au@Pd@Pt纳米粒子对甲酸电催化行为类似. 与Au@Pd@Pt纳米粒子相比,其最佳起始氧化电位偏正0.05 V,但电催化活性并没有明显的降低. 通过改变催化剂比表面积研究甲酸的电催化行为,发现将9 nm Ag纳米粒子作为内核的9 nm Ag@Pd@Pt负载在活性炭中,在保持催化活性不变的情况下,碳载的催化剂价格可比55 nm Au@Pd@Pt纳米粒子降低220倍左右.

本文引用格式

林晓东 , 陈杜宏 , 田中群 . 壳层厚度可调控的Ag@Pd@Pt纳米粒子的合成和甲酸电催化研究[J]. 电化学, 2016 , 22(6) : 570 -576 . DOI: 10.13208/j.electrochem.160569

Abstract

In an effort to lower cost of a catalyst, the silver (Ag) core with palladium (Pd) layer then platinum (Pt) island (Ag@Pd@Pt) nanoparticles were synthesized and the electrocatalytic activity of Ag@Pd@Pt nanoparticles on formic acid was compared with that of Au@Pd@Pt nanoparticles reported previously. The results showed that the existence of a small amount of Pt could significantly improve the activity of the catalyst. When the surface coverage of Pt approached 0.5 monolayers, the activity of Ag@Pd@Pt nanoparticles reached the maximum. Though the onset potential of the electro-oxidation was slightly more positive (about 50 mV), the overall electrocatalytic activity of Ag@Pd@Pt nanoparticles was similar to that of the Au@Pd@Pt nanoparticles. The relationship between the changing specific surface area and the electrocatalytic activity behavior of Ag@Pd@Pt nanoparticles in formic acid was also studied. The price of Ag@Pd@Pt nanoparticles with Ag core of 9 nm supported by activated carbon was ~ 220 times lower than that of 55 nm Au@Pd@Pt nanoparticles based on the similar electocatalytic activity being obtained.
文章导航

/