壳层厚度可调控的Ag@Pd@Pt纳米粒子的合成和甲酸电催化研究
收稿日期: 2016-09-23
修回日期: 2016-11-28
网络出版日期: 2016-12-02
基金资助
国家自然科学基金项目(No. 2011YQ030124)资助
Syntheses of Ag@Pd@Pt Nanoparticles with Tunable Shell Thickness for Electrochemical Oxidation of Formic Acid
Received date: 2016-09-23
Revised date: 2016-11-28
Online published: 2016-12-02
在本课题组研究55 nm Au@Pd@Pt对甲酸电催化效果基础上,我们采用Ag取代Au制备55 nm Ag@Pd@Pt纳米粒子以降低催化剂的成本,并对甲酸的电催化行为进行研究. 研究表明:少量Pt的存在可大幅度提高催化剂的活性,当Pt的覆盖度为0.5 单原子层(ML)时,起始氧化电位最为靠前,氧化峰电流最大,这与Au@Pd@Pt纳米粒子对甲酸电催化行为类似. 与Au@Pd@Pt纳米粒子相比,其最佳起始氧化电位偏正0.05 V,但电催化活性并没有明显的降低. 通过改变催化剂比表面积研究甲酸的电催化行为,发现将9 nm Ag纳米粒子作为内核的9 nm Ag@Pd@Pt负载在活性炭中,在保持催化活性不变的情况下,碳载的催化剂价格可比55 nm Au@Pd@Pt纳米粒子降低220倍左右.
林晓东 , 陈杜宏 , 田中群 . 壳层厚度可调控的Ag@Pd@Pt纳米粒子的合成和甲酸电催化研究[J]. 电化学, 2016 , 22(6) : 570 -576 . DOI: 10.13208/j.electrochem.160569
[1] Jahnke T, Futter G, Latz A, et al. Performance and degradation of proton exchange membrane fuel cells: State of the art in modeling from atomistic to system scale[J]. Journal of Power Sources, 2016, 304: 207-233.
[2] Roen L M, Paik C H, Jarvic T D. Electrocatalytic corrosion of carbon support in PEMFC cathodes[J]. Electrochemical and Solid State letters, 2004, 7(1): A19-A22.
[3] Varcoe J R, Slade R C T. Prospects for alkaline anion-exchange membranes in low temperature fuel cells[J]. Fuel Cells, 2005, 5(2): 187-200.
[4] Sommer E M, Vargas J V C, Martins L S, et al. The maximization of an alkaline membrane fuel cell (AMFC) net power output[J]. International Journal Energy Research, 2016, 40(7): 924-939.
[5] Yu X, Pickup P G. Recent advances in direct formic acid fuel cells (DFAFC)[J]. Journal of Power Sources, 2008, 182(1): 124-132.
[6] Park I S, Lee K S, Choi J H, et al. Surface structure of Pt-modified Au nanoparticles and electrocatalytic activity in formic acid electro-oxidation[J]. Journal of Physical Chemistry C 2007, 111(51): 19126-19133.
[7] Chen W, Kim J, Sun S, et al. Composition effects of FePt alloy nanoparticles on the electro-oxidation of formic acid[J]. Langmuir, 2007, 23(22): 11303-11310.
[8] Li D, Meng F, Wang H, et al. Nanoporous AuPt alloy with low Pt content: A remarkable electrocatalyst with enhanced activity towards formic acid electro-oxidation[J]. Electrochimica Acta 2016,190 (0013-4686): 852-861.
[9] Zhang Z, Wang Y, Wang X. Nanoporous bimetallic Pt-Au alloy nanocomposites with superior catalytic activity towards electro-oxidation of methanol and formic acid[J]. Nanoscale, 2011, 3(4):1663-1674.
[10] Zhang H, Wang C, Wang J, et al. Carbon-supported Pd-Pt nanoalloy with low Pt content and superior catalysis for formic acid electro-oxidation[J]. Journal of Physical Chemistry C, 2010, 114(14): 6446-6451.
[11] Du C, Chen M, Wang W, et al. Nanoporous PdNi Alloy Nanowires As Highly Active Catalystsfor the Electro-Oxidation of Formic Acid[J]. ACS Applied Materials & Interfaces, 2011, 3(2): 105-109.
[12] Zhou Y, Du C, Han G, et al. Ultra-low Pt decorated PdFe alloy nanoparticles for formic acid electro-oxidation[J]. Electrochimica Acta, 2016, 217: 203-209.
[13] Al-Akraa I M, Mohammad A M, El-Deab M S, et al. Electrocatalysis by design: Synergistic catalytic enhancement of formic acid electro-oxidation at core-shell Pd/Pt nanocatalysts[J]. International Journal of Hydrogen Energy, 2015, 40(4): 1789-1794.
[14] Wang S, Yang G, Yang S. Pt-Frame@Ni quasi core-shell concave octahedral PtNi3 bimetallic nanocrystals for electrocatalytic methanol oxidation and hydrogen evolution[J]. The Journal of Physical Chemistry C, 2015, 119(50): 27938-27945.
[15] Wang D, Xin H L, Hovden R, et al. Structurally ordered intermetallic platinum-cobalt core-shell nanoparticles with enhanced activity and stability as oxygen reduction electrocatalysts[J]. Nature Materials, 2013, 12(1): 81-87.
[16] Fang P-P, Duan S, Lin X-D, et al. Tailoring Au-core Pd-shell Pt-cluster nanoparticles for enhanced electrocatalytic activity[J]. Chemical Science, 2011, 2(3): 531-539.
[17] Pillai Z S, Kamat P V. What factors control the size and shape of silver nanoparticles in the citrate ion reduction method[J]. The Journal of Physical Chemistry B, 2003, 108(3): 945-951.
[18] Xia B Y, Wu H B, Wang X, et al. One-pot synthesis of cubic PtCu3 nanocages with enhanced electrocatalytic activity for the methanol oxidation reaction[J]. Journal of the American Chemical Society, 2012, 134(34): 13934-13937.
[19] Strasser P, Koh S, Anniyev T, et al. Lattice-strain control of the activity in dealloyed core-shell fuel cell catalysts[J]. Nature Chemistry, 2010, 2(6): 454-460.
[20] Tedsree K, Li T, Jones S, et al. Hydrogen production from formic acid decomposition at room temperature using a Ag-Pd core-shell nanocatalyst[J]. Nature Nanotechnology, 2011, 6(5): 302-307.
[21] Zhang S, Metin Ö, Su D, et al. Monodisperse AgPd alloy nanoparticles and their superior catalysis for the dehydrogenation of formic acid[J]. Angewandte Chemie International Edition, 2013, 52(13): 3681-3684.
/
〈 |
|
〉 |