模板法合成NiO@Co3O4空心多孔小球及其储电性能的研究
收稿日期: 2016-05-23
修回日期: 2016-07-20
网络出版日期: 2016-08-01
基金资助
This work was supported by National Natural Science Foundation of China (51173212), National Basic Research Program of China (2015CB932304), Natural Science Foundation of Guangdong Province (S2013020012833), Project of High Level Talents in Higher School of Guangdong Province, and Science and Technology Planning Project of Guangdong Province (2013B010403011).
Template-Assisted Hydrothermal Synthesis of NiO@Co3O4 Hollow Spheres with Hierarchical Porous Surfaces for Supercapacitor Applications
Received date: 2016-05-23
Revised date: 2016-07-20
Online published: 2016-08-01
Supported by
This work was supported by National Natural Science Foundation of China (51173212), National Basic Research Program of China (2015CB932304), Natural Science Foundation of Guangdong Province (S2013020012833), Project of High Level Talents in Higher School of Guangdong Province, and Science and Technology Planning Project of Guangdong Province (2013B010403011).
空心结构在能量转化和储存等重要应用方面,展现出了巨大的潜力. 为了进一步提高性能,根据物质的组成和结构,合理设计出更复杂的空心结构材料是非常必要的,但目前仍然存在相当大的挑战. 本文报导了一种以硅小球作为模板的高效方法,合成了新型的NiO@Co3O4空心多孔小球,其比表面积可达219.68 m2·g-1. NiO@Co3O4空心多孔小球的高比表面积有利于增强离子的扩散和提高活性物质的利用效率,并可防止纳米颗粒团聚. 测试结果表明,在5 mV·s-1的扫描速度下,所制备的NiO@Co3O4空心多孔小球的比电容值达1140.9 F·g-1,同时具有良好的循环稳定性,显示出该材料在超级电容器领域有较好的应用前景.
关键词: 空心多孔小球; 一氧化镍/四氧化三钴; 硅小球模板; 高比表面积; 超级电容器
周文 , 卢雪峰 , 吴明娒 , 李高仁 . 模板法合成NiO@Co3O4空心多孔小球及其储电性能的研究[J]. 电化学, 2016 , 22(5) : 513 -520 . DOI: 10.13208/j.electrochem.160544
Hollow structures have shown great potentials in a variety of important applications, such as energy conversion and storage. In order to further enhance the performance, the rational design of hollow structures with higher complexity in terms of composition and structure is highly desirable and still remains a great challenge. In this work, an efficient strategy was established for the fabrication of novel NiO@Co3O4 hollow spheres (HSs) with hierarchical porous surfaces by silica spheres template-assisted hydrothermal synthesis. The as-fabricated NiO@Co3O4 HSs showed high specific surface area of 219.68 m2·g-1, and significant enhancement in ion diffusion and utilization rate, as well as effective prevention in nanoparticle agglomeration. When used as electrodes, the NiO@Co3O4 HSs exhibited a large specific capacitance of 1140.9 F·g-1 at the scan rate of 5 mV·s-1 and excellent cycling stability, suggesting a promising application for supercapacitors.
(1) Chen, Z.; Augustyn, V.; Wen, J; et al. High-Performance Supercapacitors Based on Intertwined CNT/V2O5 Nanowire Nanocomposites. [J]. Advanced Materials, 2011, 23, 791-795.
(2) Bao, L.; Zang, J.; Li, X. Flexible Zn2SnO4/MnO2 Core/Shell Nanocable−Carbon Microfiber Hybrid Composites for High-Performance Supercapacitor Electrodes. [J]. Nano Letters, 2011, 11, 1215-1220.
(3) Aricò, A. S.; Bruce, P.; Scrosati, B.; et al. Nanostructured Materials for Advanced Energy Conversion and Storage Devices. [J]. Nature Materials, 2005, 4, 366–377.
(4) Guo, Y. G.; Hu, J. S.; Wan, L. J. Nanostructured Materials for Electrochemical Energy Conversion and Storage Devices. [J]. Advanced Materials, 2008, 20, 2878-2887.
(5) Peng, C.; Zhang, S. W.; Zhou, X. H.; et al. Unequalisation of Electrode Capacitances for Enhanced Energy Capacity in Asymmetrical Supercapacitors. [J]. Energy & Environmental Science, 2010, 3, 1499-1502.
(6) Zhang, L. L.; Zhao, X. S. Carbon-Based Materials as Supercapacitor Electrodes. [J]. Chemical Society Reviews, 2009, 38, 2520-2531.
(7) Peng, X.; Peng, L.; Wu, C.; et al. Two Dimensional Nanomaterials for Flexible Supercapacitors. [J]. Chemical Society Reviews, 2014, 43, 3303-3323.
(8) Rakhi, R. B.; Chen, W.; Cha, D.; et al. Substrate Dependent Self-Organization of Mesoporous Cobalt Oxide Nanowires with Remarkable Pseudocapacitance. [J]. Nano Letters, 2012, 12, 2559-2567.
(9) Cheng, Y.; Lu, S.; Zhang, H.; et al. Synergistic Effects from Graphene and Carbon Nanotubes Enable Flexible and Robust Electrodes for High-Performance Supercapacitors. [J]. Nano Letters, 2012, 12, 4206–4211.
(10) Maruyama, H.; Nakano, H.; Nakamoto, M.; et al. High-Power Electrochemical Energy Storage System Employing Stable Radical Pseudocapacitors. [J]. Angewandte Chemie International Edition, 2014, 126, 1348–1352.
(11) Richey, F. W.; Dyatkin, B.; Gogotsi, Y.; et al. Ion Dynamics in Porous Carbon Electrodes in Supercapacitors Using in Situ Infrared Spectroelectrochemistry. [J]. Journal of the American Chemical Society, 2013, 135, 12818-12826.
(12) Lee, C. Y.; Bond, A. M. Revelation of Multiple Underlying RuO2 Redox Processes Associated with Pseudocapacitance and Electrocatalysis. [J]. Langmuir, 2010, 26, 16155-16162.
(13) Chen, L. Y.; Hou, Y.; Kang, J. L.; et al. Toward the Theoretical Capacitance of RuO2 Reinforced by Highly Conductive Nanoporous Gold. [J]. Advanced Energy Materials, 2013, 3, 851-856.
(14) Ding, S. J.; Zhu, T.; Chen, J.; et al. Controlled Synthesis of Hierarchical NiO Nanosheet Hollow Spheres with Enhanced Supercapacitive Performance. [J]. Journal of Materials Chemistry, 2011, 21, 6602-6606.
(15) Lee, J. W.; Ahn, T.; Kim, J. H.; et al. Nanosheets Based Mesoporous NiO Microspherical Structures via Facile and Template-Free Method for High Performance Supercapacitors. [J]. Electrochimica Acta, 2011, 56, 4849-4857.
(16) Wang, X. Y.; Wang, X. Y.; Yi, L. H.; et al. Preparation and Capacitive Properties of the Core–Shell Structure Carbon Aerogel Microbeads- Nanowhisker-Like NiO Composites. [J]. Journal of Power Sources, 2013, 224, 317-323.
(17) Deori, K.; Ujjain, S. K.; Sharma, R. K.; et al. Morphology Controlled Synthesis of Nanoporous Co3O4 Nanostructures and Their Charge Storage Characteristics in Supercapacitors. [J]. ACS Applied Materials & Interfaces, 2013, 5, 10665-10672.
(18) Zhang, Y. Z.; Wang, Y.; Xie, Y. L.; et al. Porous Hollow Co3O4 with Rhombic Dodecahedral Structures for High-Performance Supercapacitors. [J]. Nanoscale, 2014, 6, 14354-14359.
(19) Xia, X. H.; Tu, J. P.; Zhang, Y. Q.; et al. Freestanding Co3O4 Nanowire Array for High Performance Supercapacitors. [J]. RSC Advances, 2012, 2, 1835-1841.
(20) Zhong, J. H.; Wang, A. L.; Li, G. R.; et al. Co3O4/Ni(OH)2 Composite Mesoporous Nanosheet Networks as a Promising Electrode for Supercapacitor Applications. [J]. Journal of Materials Chemistry, 2012, 22, 5656- 5665.
(21) Liu, M. C.; Kong, L. B.; Lu, C.; et al. A Sol–Gel Process for Fabrication of NiO/NiCo2O4/Co3O4 Composite with Improved Electrochemical Behavior for Electrochemical Capacitors. [J]. ACS Applied Materials & Interfaces, 2012, 4, 4631-4636.
(22) Shen, L. F.; Yu, L.; Yu, X. Y.; et al. Self-Templated Formation of Uniform NiCo2O4 Hollow Spheres with Complex Interior Structures for Lithium-Ion Batteries and Supercapacitors. [J]. Angewandte Chemie International Edition, 2015, 54, 1868-1872.
(23) Li, W. Y.; Xu, K. B.; Song, G. S.; et al. Facile Synthesis of Porous MnCo2O4.5 Hierarchical Architectures for High-Rate Supercapacitors. [J]. CrystEngComm, 2014, 16, 2335-2339.
(24) Zhu, D. D.; Wang, Y. D.; Yuan, G. L.; et al. High-Performance Supercapacitor Electrodes Based on Hierarchical Ti@Mno2 Nanowire Arrays. [J]. Chemical Communications, 2014, 50, 2876-2878.
(25) Yuan, C. Z.; Zhang, X. G.; Su, L. H.; et al. Facile Synthesis and Self-Assembly of Hierarchical Porous NiO Nano/Micro Spherical Superstructures for High Performance Supercapacitors. [J]. Journal of Materials Chemistry, 2009, 19, 5772-5777.
(26) Liang, K.; Tang, X. Z.; Hu, W. C. High-Performance Three-Dimensional Canoporous NiO Film as A Supercapacitor Electrode. [J]. Journal of Materials Chemistry, 2012, 22, 11062-11067.
(27) Cao, C. Y.; Guo, W.; Cui, Z. M.; et al. Microwave-assisted Gas/Liquid Interfacial Synthesis of Flowerlike NiO Hollow Nanosphere Precursors and Their Application as Supercapacitor Electrodes. [J]. Journal of Materials Chemistry, 2011, 21, 3204-3209.
(28) Wang, D. W.; Li, F.; Liu, M.; et al. 3D Aperiodic Hierarchical Porous Graphitic Carbon Material for High-Rate Electrochemical Capacitive Energy Storage. [J]. Angewandte Chemie International Edition, 2008, 47, 373-376.
(29) Wang, X.; Yan, C. Y.; Sumboja, A.; et al. High Performance Porous Nickel Cobalt Oxide Nanowires for Asymmetric Supercapacitor. [J]. Nano Energy, 2014, 3, 119-126.
(30) Zhang, X.; Zhao, Y. Q.; Xu, C. L. Surfactant dependent self-organization of Co3O4 nanowires on Ni foam for high performance supercapacitors: from nanowire microspheres to nanowire paddy fields. [J]. Nanoscale, 2014, 6, 3638–3646.
(31) Lu, X. F.; Wu, D. J.; Li, R. Z.; et al. Hierarchical NiCo2O4 nanosheets @hollow microrod arrays for high-performance asymmetric supercapacitors. [J]. Journal of Materials Chemistry A, 2014, 2, 4706-4713.
(32)Wang, H. W.; Hu, Z. A.; Chang, Y. Q.; et al. Design and synthesis of NiCo2O4–reduced graphene oxide composites for high performance supercapacitors. [J]. Journal of Materials Chemistry, 2011, 21, 10504-10511.
/
〈 |
|
〉 |