欢迎访问《电化学(中英文)》期刊官方网站,今天是
研究论文

四丁基六氟磷酸铵作为锂离子电池阻燃添加剂的研究

  • 赵青 ,
  • 张倩 ,
  • 范镜敏 ,
  • 郑明森 ,
  • 董全峰
展开
  • 1. 淮安市科技情报研究所,淮安 223001; 2. 厦门大学化学化工学院化学系,厦门 361005

收稿日期: 2016-04-19

  修回日期: 2016-05-26

  网络出版日期: 2016-08-11

基金资助

本项目由国家973项目(No. 2015CB251102),国家自然科学基金项目(No. U1305246, No. 21321062)资助

Tetrabutylammonium Hexafluorophosphate as Flame Retardant Additive for Lithium Ion Batteries

  • ZHAO Qing ,
  • ZHANG Qian ,
  • FAN Jing-min ,
  • ZHENG Ming-sen ,
  • DONG Quan-feng
Expand
  • 1. Huai An Institute of Science and Technology Information, Huai'an, 223001; 2. Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, Fujian, China

Received date: 2016-04-19

  Revised date: 2016-05-26

  Online published: 2016-08-11

摘要

近年来关于锂离子电池造成的安全问题甚至事故的报道屡见不鲜,锂离子电池的安全问题已经成为人们关注的焦点. 我们用四丁基六氟磷酸铵(TBAPF6)作为锂离子电池电解液阻燃添加剂,研究发现添加了TBAPF6的电解液具有明显的阻燃效果,同时电解液电导率下降并不明显. LiCoO2/Graphite全电池在添加了TBAPF6的电解液中可逆容量会略有降低,但具有更优异的循环稳定性. 主要是由于TBAPF6添加量的增加会影响石墨电极的库伦效率,延长活化时间. 通过对LiCoO2/Graphite全电池绝热加速量热仪(ARC)测试,表明添加TBAPF6对电池的燃烧有明显的抑制作用. 在TBAPF6添加量至5%时,电池在300 oC内自放热速率不超过0.1oC/min,电池的安全性显著提高.

本文引用格式

赵青 , 张倩 , 范镜敏 , 郑明森 , 董全峰 . 四丁基六氟磷酸铵作为锂离子电池阻燃添加剂的研究[J]. 电化学, 2017 , 23(4) : 435 -440 . DOI: 10.13208/j.electrochem.160419

Abstract

Safety issues have been attracted more and more attentions due to the wide applications of lithium ion batteries. Introducing flame retardant additives are one of the effective strategies to improve the safety of lithium-ion batteries. In this paper, the tetrabutylammonium hexafluorophosphate (TBAPF6) as a flame retardant additive was added to the electrolyte as a flame retardant additive to enhance the safety of lithium ion batteries. The self-extinguishing time (SET) and ionic conductivities of the electrolytes with different TBAPF6 contents were investigated. It is found that TBAPF6 dramatically reduced the flammability of the electrolyte while slightly decreasing ionic conductivitiesconductivity. The electrochemistry electrochemical performances of graphite half cells with higher content of TBAPF6 showed poor compatibility between TBAPF6 additive and graphite anode due to the lack of stable SEI layer formation. But However, the LiCoO2/Graphite graphite full battery with 5% TBAPF6 showed good electrochemical performance and extraordinary thermal stability within 300 oC, representing demonstrating a good flame retardant additive of TBAPF6.

参考文献

[1] Choi, N.-S., Chen, Z., Freunberger, S. A., et al. Challenges Facing Lithium Batteries and Electrical Double-Layer Capacitors[J]. Angewandte Chemie International Edition, 2012, 51(40): 9994-10024.

[2] Goodenough, J. B., Kim, Youngsik. Challenges for Rechargeable Li Batteries[J]. Chemistry of Materials, 2009, 22(3): 587-603.

[3] 许梦清. 锂离子电池电解质溶液功能组分的作用机理及其应用[M]. 华南理工大学, 2009.

[4] Zhang, S. S. A review on electrolyte additives for lithium-ion batteries[J]. Journal of Power Sources, 2006, 162(2): 1379-1394.

[5] Yao, X. L., Xie, S., Chen, C. H., et al. Comparative study of trimethyl phosphite and trimethyl phosphate as electrolyte additives in lithium ion batteries[J]. Journal of Power Sources, 2005, 144(1): 170-175.

[6] Wang, X., Yamada, C., Naito, H., et al. High-Concentration Trimethyl Phosphate-Based Nonflammable Electrolytes with Improved Charge–Discharge Performance of a Graphite Anode for Lithium-Ion Cells[J]. Journal of The Electrochemical Society, 2006, 153(1): A135-A139.

[7] Xiang, H. F., Lin, H. W., Yin, B., et al. Effect of activation at elevated temperature on Li-ion batteries with flame-retarded electrolytes[J]. Journal of Power Sources, 2010, 195(1): 335-340.

[8] Wang, X., Yasukawa, E., Kasuya , S. Nonflammable Trimethyl Phosphate Solvent-Containing Electrolytes for Lithium-Ion Batteries: I. Fundamental Properties[J]. Journal of The Electrochemical Society, 2001, 148(10): A1058-A1065.

[9] Xu, K. Nonaqueous liquid electrolytes for lithium-based rechargeable batteries[J]. Chemical Reviews, 2004, 104(10): 4303-4417.

[10] Izquierdo-Gonzales, S., Li, W., Lucht, B. L. Hexamethylphosphoramide as a flame retarding additive for lithium-ion battery electrolytes[J]. Journal of Power Sources, 2004, 135(1–2): 291-296.

[11] Zhou, D., Li, W., Tan, C., et al. Cresyl diphenyl phosphate as flame retardant additive for lithium-ion batteries[J]. Journal of Power Sources, 2008, 184(2): 589-592.

[12] Gao, K., Song, X. H., Shi, Y., et al. Electrochemical performances and interfacial properties of graphite electrodes with ionic liquid and alkyl-carbonate hybrid electrolytes[J]. Electrochimica Acta, 2013, 114: 736-744.

[13] Hofmann, A., Schulz, M., Indris, S., et al. Mixtures of Ionic Liquid and Sulfolane as Electrolytes for Li-Ion Batteries[J]. Electrochimica Acta, 2014, 147: 704-711.

[14] Hess, S., Wohlfahrt-Mehrens, M., Wachtler, M. Flammability of Li-Ion Battery Electrolytes: Flash Point and Self-Extinguishing Time Measurements[J]. Journal of The Electrochemical Society, 2015, 162(2): A3084-A3097.

[15] MacNeil, D. D., Hatchard, T. D., Dahn, J. R. A Comparison Between the High Temperature Electrode/Electrolyte Reactions of Li x CoO2 and Li x Mn2O4[J]. Journal of The Electrochemical Society, 2001, 148(7): A663-A667.

[16] Jhu, C.-Y., Wang, Y.-W., Wen, C.-Y., et al. Thermal runaway potential of LiCoO2 and Li(Ni1/3Co1/3Mn1/3)O2 batteries determined with adiabatic calorimetry methodology[J]. Applied Energy, 2012, 100(0): 127-131.

文章导航

/