欢迎访问《电化学(中英文)》期刊官方网站,今天是
研究论文

超级电容器用凹凸棒石负载氮掺杂碳@NiCo2O4复合电极材料的制备及其电化学性能研究

  • 万慧 ,
  • 应宗荣 ,
  • 刘信东 ,
  • 卢建建 ,
  • 张文文
展开
  • 南京理工大学 化工学院,江苏 南京 210094

收稿日期: 2016-05-23

  修回日期: 2016-07-05

  网络出版日期: 2016-07-29

Preparation and Electrochemical Properties of Attapulgite-Supported Nitrogen-Doped Carbon@NiCo2O4Composites for Supercapacitors

  • WAN Hui ,
  • YING Zong-rong ,
  • LIU Xin-dong ,
  • LU Jian-jian ,
  • ZHANG Wen-wen
Expand
  • School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, P.R.China

Received date: 2016-05-23

  Revised date: 2016-07-05

  Online published: 2016-07-29

摘要

通过在凹凸棒石表面原位聚合苯胺制得聚苯胺包覆凹凸棒石,经高温热处理得到凹凸棒石(ATP)负载氮掺杂碳(ANC),然后通过水热-煅烧法在ANC表面负载NiCo2O4制得ANC@NiCo2O4复合材料. 采用FTIR、XRD、SEM、TEM和BET表征其化学组成和微观结构,通过恒流充放电(GCD)和循环伏安法(CV)测试其电化学性能.结果表明,ANC较高的比表面积和疏松多孔的形貌,使水热NiCo2O4颗粒能够均匀分散在其表面,与电解液的接触面积较大,赋予复合材料良好的电化学性能. 复合材料在1 A·g-1时质量比电容可达945.5 F·g-1,16 A·g-1时质量比电容为587.6 F·g-1,保持率为62.1%,表现出较好的倍率特性.在12 A·g-1大电流下循环充放电2000次后,质量比电容保持率达74.1%,高于水热纯纳米NiCo2O4的48.7%,表明ANC@NiCo2O4复合材料具有较好的循环稳定性.

本文引用格式

万慧 , 应宗荣 , 刘信东 , 卢建建 , 张文文 . 超级电容器用凹凸棒石负载氮掺杂碳@NiCo2O4复合电极材料的制备及其电化学性能研究[J]. 电化学, 2017 , 23(1) : 28 -35 . DOI: 10.13208/j.electrochem.160523

Abstract

In this work, the attapulgite-supported nitrogen-doped carbon (ANC) was prepared by in-situ chemically polymerizing polyaniline coating upon attapulgite, followed by high temperature heat treatment, and then NiCo2O4was reacted onto the surface of ANC by a combination of hydrothermal reaction and calcination to synthesize ANC@NiCo2O4 composites. The chemical composition and morphology of the samples were characterized by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM) and N2 adsorption/desorption. The electrochemical properties were evaluated by means of constant current charge discharge (GCD) and cyclic voltammetry (CV). The results showed that due to the high specific surface area and porous structure of ANC, the NiCo2O4 particles were uniformly located on the surface, resulting in large contact reaction areas with the electrolyte and improved electrochemical performance. At a current density of 1 A·g-1, the specific capacitance was up to 945.5 F·g-1, while at a current density of 16 A·g-1, it was 587.6 F·g-1, i.e., the capacitance retention was 62.1%, revealing a better rate performance. After 2000 cycles of charge-discharge process at a high current of 12 A·g-1, the capacitance retention was 74.1%, higher than 48.7% of pure NiCo2O4, which indicated that the as-prepared composite electrode materials had excellent electrochemical durability.

参考文献

[1] Liu C, Li F, Ma L P, et al. Advanced materials for energy storage[J]. Advanced materials, 2010, 22(8): E28-62.

[2] Lu J J(卢建建), Ying Z R(应宗荣), Liu X D(刘信东), et al. Preparation of Cross-Linked Porous Carbon Nanofiber Networks by Electrospinning Method and Their Electrochemical Capacitive Behaviors[J]. Acta Physico-Chimica Sinica( 物理化学学报), 2015, 31(11): 2099-2108.

[3] Wu Z S, Ren W C, Wang D W, et al. High energy MnO2 nanowire/graphene and graphene asymmetric electrochemical capacitors[J]. ACS Nano, 2010, 4(10): 5835-5842.

[4] Xia X H, Tu J P, Mai Y J, et al. Self-supported hydrothermal synthesized hollow Co3O4 nanowire arrays with high supercapacitor capacitance[J]. Journal of Materials Chemistry, 2011, 21(25): 9319-9325.

[5] Xiao-Dan Y E, Jian-Guan H U, Yang Q, et al. Preparation and Properties of NiO/AC Asymmetric Capacitor[J]. Journal of Inorganic Materials, 2014, 29(3): 250-256.

[6] Huang K L(黄可龙), Zeng W W(曾雯雯), Yang Y P(杨幼平), et al. Solvothermal synthesis and capacitance performance of Co3O4 nanocubes[J]. Chinese Journal of Inorganic Chemistry(无机化学学报), 2007, 23(9): 1555-1560.

[7] Liu X Y, Zhang Y Q, Xia X H, et al. Self-assembled porous NiCo2O4 hetero-structure array for electrochemical capacitor[J]. Journal of Power Sources, 2013, 239: 157-163.

[8] Ashok K D, Layek R K, Nam H K, et al. Reduced graphene oxide (RGO)-supported NiCo2O4 nanoparticles: an electrocatalyst for methanol oxidation.[J]. Nanoscale, 2014, 6(18):10657-10665.

[9] Cai F, Kang Y, Chen H, et al. Hierarchical CNT@ NiCo2O4 core–shell hybrid nanostructure for high-performance supercapacitors[J]. Journal of Materials Chemistry A, 2014, 2(29): 11509-11515.

[10] Qian C(车倩). Preparation of Ordered Mesoporous Carbon/NiCo2O4 Electrode and Its Electrochemical Capacitive Behavior[J]. Acta Physico-Chimica Sinica(物理化学学报), 2012, 28(4):837-842(6).

[11] Ma Y, Jiang H, Liu Q, et al. Rattle-type NiCo2O4 carbon composite microspheres as electrode materials for high-performance supercapacitors[J]. New Journal of Chemistry, 2015, 39(9): 7495-7502.

[12] Pan X C(潘旭晨), Jing T(汤静), Xue H R(薛海荣), et al. Synthesis and electrocatalytic performance of N-doped ordered mesoporous carbon-Ni nanocomposite[J]. Chinese Journal of Inorganic Chemistry(无机化学学报), 2015, 31(2):282-290.

[13] Das A K, Layek R K, Kim N H, et al. Reduced graphene oxide (RGO) supported NiCo2O4 nanoparticles: an electrocatalyst for methanol oxidation[J]. Nanoscale, 2014, 6(18): 10657-10665.

[14] Li L, Cheah Y, Ko Y, et al. The facile synthesis of hierarchical porous flower-like NiCo2O4 with superior lithium storage properties[J]. Journal of Materials Chemistry A, 2013, 1(36): 10935-10941.

[15] Chi B, Lin H, Li J, et al. Comparison of three preparation methods of NiCo2O4 electrodes[J]. International Journal of Hydrogen Energy, 2006, 31(9): 1210-1214.

文章导航

/