玻碳电极表面因瓦合金的电化学成核机理
收稿日期: 2016-03-18
修回日期: 2016-03-29
网络出版日期: 2016-04-05
基金资助
国家自然科学基金项目(21321062)资助
Electrochemical Nucleation of Invar Alloy on Glassy Carbon Electrode
Received date: 2016-03-18
Revised date: 2016-03-29
Online published: 2016-04-05
在弱酸性因瓦合金(含镍质量分数为32~36 % 的镍铁合金)镀液中, 以线性扫描伏安法、循环伏安法和恒电位阶跃法对因瓦合金在玻碳电极表面的电沉积过程及其成核机理进行研究. 结果表明, 在该体系下, 因瓦合金在玻碳电极表面的电结晶属于扩散控制下的不可逆电极过程. 运用Scharifker-Hills理论模型(SH)拟合实验数据表明, 因瓦合金在玻碳电极表面的共沉积更加符合三维瞬时成核的成核规律. 运用Heerman-Tarallo理论模型(HT)分析得到因瓦合金在玻碳电极表面的成核生长的动力学参数, 当阶跃电位从-1.11 V变化至-1.17 V (vs SCE), 成核密度数(N0)由0.72×105 cm-2提高至1.91×105 cm-2, 成核速率常数(A)从 40.35 s-1增至 194.38 s-1, 扩散系数(D)为(7.67±0.15)×10-5 cm2•s-1, 变化不大.
黄先杰 , 闫慧 , 黄帅帅 , 杨防祖 , 田中群 , 周绍民 . 玻碳电极表面因瓦合金的电化学成核机理[J]. 电化学, 2017 , 23(1) : 7 -12 . DOI: 10.13208/j.electrochem.160318
Abstract: The linear sweep voltammetry, cyclic voltammetry and potential step methods were used to study the electrodeposition mechanism of Invar nickel-iron alloy (the mass fraction of nickel was 32~36%) on glassy carbon electrode surface in the weak acidic bath. The results demonstrate that the electrodeposition is was a diffusion controlled irreversible electrode process in this system. The Scharifker-Hill (SH) theory theoritic model (SH) were was used employed to fitting the experimental data and the result shows that the codeposition of Invar alloy on glassy carbon electrode surface conformed to the diffusion controlled three-dimensional instantaneous nucleation mechanism. The kinetic parameters were obtained by the Heerman-Tarallo (HT) theory theoretic model (HT). When the step potential shifted from -1.11 V to -1.17 V, the active nucleation sites density (N0) increased from 0.72×105 cm-2 to 1.91 ×105 cm-2. The nucleation rate constant (A) raised from 40.35 s-1 to 194.38 s-1 and the diffusion coefficient (D) was(7.67±0.15)×10-5 cm2•s-1, remaining basically constant.
(1) Matsui M, Chikazumi S. Analysis of anomalous thermal expansion coefficient of Fe–Ni Invar alloys[J]. Journal of the physical Society of Japan, 1978, 45(2): 458-465.
(2) Ustinovshikov Y, Shabanova I. A study of microstructures responsible for the emergence of the invar and permalloy effects in Fe–Ni alloys[J]. Journal of Alloys and Compounds, 2013, 578: 292-296.
(3) Michler T. Influence of gaseous hydrogen on the tensile properties of Fe–36Ni INVAR alloy[J]. International Journal of Hydrogen Energy, 2014, 39(22): 11807-11809.
(4) Tseng A A, Müller J, Hahn Y H. Mechanical and bending characteristics of invar sheets[J]. Materials & Design, 1996, 17(2): 89-96.
(5) Yanchong Y, Weiqing C, Hongguang Z. Research on the hot ductility of Fe-36Ni invar alloy[J]. Rare Metal Materials and Engineering, 2014, 43(12): 2969-2973.
(6) Gorria P, Martinez-Blanco D, Pérez M J, et al. Structure and magnetism of Fe-rich nanostructured Fe–Ni metastable solid solutions[J]. Journal of magnetism and magnetic materials, 2005, 294(2): 159-164.
(7) Vinogradov A, Hashimoto S, Kopylov V I. Enhanced strength and fatigue life of ultra-fine grain Fe–36Ni Invar alloy[J]. Materials Science and Engineering: A, 2003, 355(1): 277-285.
(8) Nadutov V M, Ustinov A I, Demchenkov S A, et al. Structure and properties of nanostructured vacuum-deposited foils of Invar Fe–(35–38 wt%) Ni alloys[J]. Journal of Materials Science & Technology, 2015, 31(11): 1079-1086.
(9) Rajanna K, Nayak M M. Strain sensitivity and temperature behavior of invar alloy films[J]. Materials Science and Engineering: B, 2000, 77(3): 288-292.
(10) Liu Y, Liu L, Shen B, et al. A study of thermal stability in electrodeposited nanocrystalline Fe–Ni invar alloy[J]. Materials Science and Engineering: A, 2011, 528(18): 5701-5705.
(11) McCrea J L, Palumbo G, Hibbard G D, et al. Properties and applications for electrodeposited nanocrystalline Fe-Ni alloys[J]. Reviews on Advanced Materials Science, 2003, 5(3): 252-258.
(12) Liu Y, Liu L, Li J, et al. Effect of 2-butyne-1, 4-diol on the microstructure and internal stress of electrodeposited Fe–36wt.% Ni alloy films[J]. Journal of alloys and compounds, 2009, 478(1): 750-753.
(13) Kim S H, Sohn H J, Joo Y C, et al. Effect of saccharin addition on the microstructure of electrodeposited Fe–36 wt.% Ni alloy[J]. Surface and Coatings Technology, 2005, 199(1): 43-48.
(14) Grimmett D L, Schwartz M, Nobe K. Pulsed Electrodeposition of Iron‐Nickel Alloys[J]. Journal of the Electrochemical Society, 1990, 137(11): 3414-3418.
(15) Lu L(卢琳), Liu T C(刘天成), Li P(李鹏), et al. 电沉积因瓦合金镀层成分的影响因素 [J]. Journal of University of Science and Technology Beijing(北京科技大学学报), 2008, 30(8): 903-907.
(16) Fleischmann M, Liler M. The anodic oxidation of solutions of plumbous salts. Part 1.—The kinetics of deposition of α-lead dioxide from acetate solutions[J]. Transactions of the Faraday Society, 1958, 54: 1370-1381.
(17) Fleischmann M, Thirsk H R. The potentiostatic study of the growth of deposits on electrodes[J]. Electrochimica Acta, 1959, 1(2): 146-160.
(18) Scharifker B, Hills G. Theoretical and experimental studies of multiple nucleation[J]. Electrochimica Acta, 1983, 28(7): 879-889.
(19) Scharifker B R, Mostany J. Three-dimensional nucleation with diffusion controlled growth: Part I. Number density of active sites and nucleation rates per site[J]. Journal of electroanalytical chemistry and interfacial electrochemistry, 1984, 177(1-2): 13-23.
(20) Sluyters-Rehbach M, Wijenberg J, Bosco E, et al. The theory of chronoamperometry for the investigation of electrocrystallization: Mathematical description and analysis in the case of diffusion-controlled growth[J]. Journal of electroanalytical chemistry and interfacial electrochemistry, 1987, 236(1-2): 1-20.
(21) Heerman L, Tarallo A. Theory of the chronoamperometric transient for electrochemical nucleation with diffusion-controlled growth[J]. Journal of Electroanalytical Chemistry, 1999, 470(1): 70-76.
(22) Shi J P(史纪鹏), Yang F Z(杨防祖), Tian Z Q(田中群), et al. Electrocrystallization of Cu-Sn alloy on copper electrode surface[J]. Acta Physico-Chimica Sinica(物理化学学报), 2013, 29(12): 2579-2584.
(23) Wu X Y(吴小英), Yang L K(杨丽坤), Yan H(闫慧), et al. Electrochemical nucleation of Au on n-type semiconductor silicon electrode surface[J]. Acta Physico-Chimica Sinica(物理化学学报), 2015, 31(9): 1708-1714.
(24) Yue J P(岳俊培), Yang F Z(杨防祖), Tian Z Q(田中群), et al. Electrocrystallization of Pd-Ni alloys on glassy carbon electrode[J]. Acta Physico-Chimica Sinica(物理化学学报), 2011, 27(6): 1446-1450.
(25) Li P(李平), Xu J Y(许家园), Zhou S M(周绍民). Studies on Ni-Fe alloy codeposition[J]. Acta Physico-Chimica Sinica(物理化学学报), 1989, 5(06): 693-698.
(26) Fletcher S. Some new formulae applicable to electrochemical nucleation/growth/collision[J]. Electrochimica Acta, 1983, 28(7): 917-923.
(27) Fletcher S, Halliday C S, Gates D, et al. The response of some nucleation/growth processes to triangular scans of potential[J]. Journal of electroanalytical chemistry and interfacial electrochemistry, 1983, 159(2): 267-285.
(28) Feng G, Xiong Y, Wang H, et al. Cyclic voltammetry investigation of diffusion of ferrocene within propylene carbonate organogel formed by gelator[J]. Electrochimica Acta, 2008, 53(28): 8253-8257.
(29) Gunawardena G, Hills G, Montenegro I, et al. Electrochemical nucleation: part I. general considerations[J]. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 1982, 138(2): 225-239.
(30) Xu C(徐超), Chen F C(陈范才), Wu D M(吴道明), et al. 镍铁钨合金的电沉积行为研究[J]. Surface Technology(表面技术), 2010, 39(5): 26-29.
/
〈 |
|
〉 |