欢迎访问《电化学(中英文)》期刊官方网站,今天是
研究论文

哌啶型离子液体混合电解液在Li/LiCoO2电池中的性能研究

  • 程琥 ,
  • 聂晓燕 ,
  • 申叶丹
展开
  • 贵州师范大学化学与材料科学学院,贵州省功能材料化学重点实验室,贵州 贵阳 550001

收稿日期: 2016-02-18

  修回日期: 2016-03-04

  网络出版日期: 2016-03-14

基金资助

贵州省科学技术基金项目(黔科合J字[2012]2284) 和贵阳市科技计划项目(筑科合同{2012101}3-8号)资助

Performance of Piperidine Ionic Liquid Based Mixed Electrolyte in Li/LiCoO2 Cell

  • Cheng Hu ,
  • Nie Xiao-yan ,
  • Shen Ye-dan
Expand
  • School of Chemistry and Material science, Key Lab for Functional Materials Chemistry of Guizhou Province, Guizhou normal university, Guiyang 550001,China

Received date: 2016-02-18

  Revised date: 2016-03-04

  Online published: 2016-03-14

摘要

合成并考察了N-甲基-N-乙(丙,丁)基哌啶-二( 三氟甲基磺酰) 亚胺三种离子液体( PP12(3,4)TFSI )作为电解液添加剂的影响. 使用热分析和电化学技术研究了离子液体混合电解液的热稳定性和电化学性能.实验表明,哌啶型离子液体可以提高有机电解液的热稳定性,并且侧链的长短对 LiCoO2 电极的电化学性能有重要的影响.当以PP13TFSI配成的混合电解液,在3.0~4.35 V之间、电流密度为150 mA•g-1时, LiCoO2 电极的首次放电容量为156.6 mAh•g-1,200周循环后容量为133.9 mAh•g-1,容量保持率为85.5%,远远优于在传统有机电解液中的循环性能.

本文引用格式

程琥 , 聂晓燕 , 申叶丹 . 哌啶型离子液体混合电解液在Li/LiCoO2电池中的性能研究[J]. 电化学, 2017 , 23(1) : 59 -63 . DOI: 10.13208/j.electrochem.160218

Abstract

The N-methyl-N-ethyl (propyl, butyl) piperidinium bis (trifluo romethanesulfonyl) imide (PP12(3,4)TFSI) ionic liquids were prepared, and their influences on the performances of Li/LiCoO2 cells were investigated. The electrochemical performance and thermostability of ionic liquids based mixed electrolytes were characterized by electrochemical methods and thermogravimetric analysis. The results showed that the piperidine ionic liquids could improve the thermostability of organic electrolyte, and the size of their side chain had played an important role on the electrochemical performance of Li/LiCoO2 cell. The Li/LiCoO2 cell used the electrolyte mixed with PP13TFSI exhibited the best electrochemical performance among the three ionic liquids. The initial discharge capacity reached 156.9 mAh·g-1 at the rate of 150 mA·g-1 and 3.0 ~ 4.35 V. The discharge capacity upon 200 cycles was 133.9 mAh·g-1, and the capacity retention was 85.5%. The cycle performance was much better than that in conventional organic electrolytes.

参考文献

[1] ZhANG S S,JOW T R, AMINE K, et al. LiPFrEC-EMC electrolyte for Li-ion battery [J].J. Power sources,2002,107:18-23.

[2] XU M Q,LI W S, ZUO X X, et al. Performance improvement of lithium ion battery using PC as a solvent component and BS as an SEI forming additive[J],J.Power sources, 2007,174:705-710.

[3] SMART M C,RATNAKUMAR B V,BEHAR A, et al. Gel polymer electrolyte lithium-ion cells with improved low temperature performance[J]. J. Power sources 2007, 165: 535-543.

[4] Smart M. C., Ratnakumar B. V., Surampudi S. Electrolytes  for  low-temperature  lithium batteries based on ternary mixtures of aliphatic carbonates, J. Electrochem. Soc., 1999,146(2): 486-492.

[5] Zhuang Q C(庄全超), Wu S(武山), Liu W Y(刘文远),et al. The research of organic electrolyte solutions for li-ion batteries [J]. Electrochemistry (电化学), 2001,7(4):401-410.

[6] Hayashi K., Nemoto Y., Tobishima S., etc. Lithium metal secondary cell electrolyte with a fatty acid ester, Key Eng. Mater., 1999, 169/170: 221-224.

[7] Wang H(王浩), Yang J P(杨聚平), Wang L(王莉),et al. The safety problem of lithion-ion battery[J]. Advanced materials  industry(新材料产业),2012,09:88-94.

[8] Li J(李军), Tang S H(唐盛贺), Huang J W(黄际伟),et al. Research progress in highly safe electrolyte systems for li-ion battery[J]. New Chem Mater (化工新型材料),2012,10:6-8.

[9] Wu K(吴凯), Zhang Y(张耀), Zeng Y Q(曾毓群),et al. Safety performance of lithium-ion battery[J]. Progress in Chemistry(化学进展),2011,Z1:401-409.                                       

[10] P Wasserschied, T Welton. Ionic Liquids in Synthesis[J]. U.S.A.WILEY-VCH20021-6.

[11] Seddon K R. Ionic liquids for Clean Technology[J]. J. Chem. Technol. Biotechnol. 199768351-356.

[12] Shi J H(石家华), Yang X(孙逊), Yang C H(杨春和),et al. Progress in the Studies on Ionic Liquids[J]. Chemistry(化学通报). 20024):243250.

[13] Peng JDeng Y. Ionic Liquids Catalyzed Biginelli Reaction under Solvent-free Conditions[J]. T etrahedron Letters2001425917-5919.

[14] A. Jarosik, S.R. Krajewski, A. Lewandowski, et al.  Conductivity  of ionic liquids in mixtures. J. Molecular Liquids. 2006, 123(1): 43-50

[15] M. Armand, F. Endres, D.R MacFarlane, et al. Ionic liquid materials for the electrochemical challenges of the future. Nature Materials. 2009, 8: 621-629.

[16] Garcia B., Lavallée S., Perron G., et al. Room temperature molten salts as lithium battery electrolyte. Electrochim. Acta, 2004, 49 (26), 4583-4588.

[17] Byrne N., Howlett P. C., MacFarlane D. R., et al. The zwitterion effect in ionic liquids: towards pratical rechargeable lithium-metal batteries. Adv. Mater., 2005, 17 (20), 2497-2501.

[18] Josip C., Thanthrimudalige D. J. D. Electrolytes for lithium rechargeable cells. US6326104B1, 2001-12-04.

[19] NAKAGAWA H, FUJINO Y, KOZONO S, et al. Application of nonflammable electrolyte with rom temperature ionic liquids (RTILs) for lithium-ion cells [J]. J Power Sources, 2007,174:1021-1026.

[20] YUAN L X, FENG J K, Al X P,et al. Improved dischargeability and reversibility of sulfur cathode in a novel ionic liquid electrolyte[J]. Electrochem Commun,2006,8:610-614.

[21] Sakaebe, H.; Matsumoto, H. N-Methyl-N-propylpiperidinium bis(trifluoromethanesulfonyl)imide (PP13-TFSI)-novel electrolyte base for Li battery[J].Electrochem. Commun. 2003, (5): 594.

文章导航

/