欢迎访问《电化学(中英文)》期刊官方网站,今天是
光电化学及新型太阳能电池近期研究专辑(厦门大学林昌健教授&中国科学院化学研究所李永舫院士主编)

金属有机框架在染料敏化太阳能电池中的应用

  • 李亚峰 ,
  • 孙晴晴 ,
  • 魏明灯
展开
  • 福州大学新能源材料研究所,福州 350002

收稿日期: 2016-02-18

  修回日期: 2016-03-18

  网络出版日期: 2016-04-05

基金资助

国家自然科学基金项目(No. 91433104, 21303020)资助

Application of Metal-Organic Frameworks in Dye-Sensitized Solar Cells

  • Li Ya-feng ,
  • Sun Qing-qing ,
  • Wei Ming-deng
Expand
  • Institute of Advanced Energy Materials, Fuzhou University, Fuzhou 350002, China

Received date: 2016-02-18

  Revised date: 2016-03-18

  Online published: 2016-04-05

摘要

为了获得高效率的染料敏化太阳能电池,其光阳极应该具有大的比表面积,以吸附足量的染料,获得很强的光捕获能力.从这个角度而言,将具有很大比表面积的金属有机框架材料引入到染料敏化太阳能电池的体系中,无疑是一种有益的探索.本文简介了金属有机框架材料在光伏领域的应用,并重点介绍了我们课题组在利用金属有机框架材料方面进行的一些探索,包括光阳极薄膜的处理、利用金属有机框架材料作为前驱体制备光阳极材料和光散射层.最后,本文对金属有机框架材料应用于染料敏化太阳能电池中的局限性及前景做了简要的展望.

本文引用格式

李亚峰 , 孙晴晴 , 魏明灯 . 金属有机框架在染料敏化太阳能电池中的应用[J]. 电化学, 2016 , 22(4) : 332 -339 . DOI: 10.13208/j.electrochem.160142

Abstract

To assemble dye-sensitized solar cells (DSSCs) with high efficiencies, their photoanodes should have large specific surface area to establish a large adsorption amount of dyes and good light-harvesting ability. From this point of view, it will be an interesting topic to explore the application of metal-organic frameworks (MOFs) in the field of DSSCs due to their huge specific surface area. This paper introduces the application of MOFs in photovoltaic devices briefly, and then summaries our approaches in using MOFs in the study of DSSCs, including the pre-treatment and the post-treatment of photoanode, the preparation of photoanode materials and the light scattering layer with MOFs as precursors. Characterization techniques such as Transmission Electron Microscopy (TEM), Scanning Electron Microscopy (SEM), Incident Photo-to-electron Conversion Efficiency (IPCE), Electrochemical Impedance Spectroscopy (EIS) and N2 adsorption-desorption isotherms were used to investigate the roles of MOFs in such devices. The introduction of MOFs was found to increase the dye adsorption greatly and inhibit the charge recombination. The decomposition of MOFs led to the formation of hierarchical TiO2 that could be used as photoanode materials directly, and it also lead to the fabrication of hierarchical ZnO with scattering ability. Finally, the limitation and prospect of MOFs in the area of DSSCs are briefly discussed.

参考文献

[1] Wei M, Konishi Y, Zhou H S, et al. Highly efficient dye-sensitized solar cells composed of mesoporous titanium dioxide[J]. Journal of Material Chemistry, 2006, 16(13): 12871293.

[2] Lopez H A, Dhakshinamoorthy A, Ferrer B, et al. Photochemical response of commercial MOFs: Al2(BDC)3 and its use as active material in photovoltaic devices[J]. Journal of Physical Chemistry C, 2011, 115(45): 2220022206.

[3] Bella F, Bongiovanni R, Kumar R S, et al. Light cured networks containing metal organic frameworks as efficient and durable polymer electrolytes for dye-sensitized solar cells[J]. Journal of Material Chemistry A, 2013, 1(32): 90339036.

[4] Lee D Y, Shinde D V, Yoon S J, et al. Cu-based metal–organic frameworks for photovoltaic application[J]. Journal of Physical Chemistry C, 2014, 118(30): 16328−16334.

[5] Du X, Fan R Q, Wang X M, et al. Cooperative crystallization of chiral heterometallic indium(iii)−potassium(i) metal−organic frameworks as photosensitizers in luminescence sensors and dye-sensitized solar cells[J]. Crystal Growth &Design, 2016, 16(3): 1737−1745.

[6] Maza W A, Haring A J, Ahrenholtz S R, et al. Ruthenium(II)-polypyridyl zirconium(IV) metal–organic frameworks as a new class of sensitized solar cells[J]. Chemical Science, 2016, 7(1): 719−727.

[7] Chi W S, Roh D K, Lee C S, et al. A shape- and morphology-controlled metal organic framework template for high-efficiency solid-state dye-sensitized solar cells[J]. Journal of Material Chemistry A, 2015, 3(43): 21599−21608.

[8] Chang T, Kung C, Chen H, et al. Planar heterojunction perovskite solar cells incorporating metal-organic framework nanocrystals[J]. Advanced Materials, 2015, 27(44): 7229−7235.

[9] Ho K C, Wu, K C W. Platinum-free counter electrode comprised of metal-organic-framework (MOF)-derived cobalt sulfide nanoparticles for efficient dye-sensitized solar cells (DSSCs)[J]. Scientific Reports, 2014, 4: 6983.

[10] Li Y F, Pang A Y, Wang C J, et al. Metal–organic frameworks: promising materials for improving the open circuit voltage of dye-sensitized solar cells[J]. Journal of Material Chemistry, 2011, 21(43): 17259−17264.

[11] Wang Z S, Yanagida M, Sayama K, et al. Electronic-insulating coating of CaCO3 on TiO2 electrode in dye-sensitized solar cells: improvement of electron lifetime and efficiency[J].  Chemistry of Materials, 2006, 18(12): 2912−2916.

[12] Li Y F, Chen C Y, Sun X, et al. Metal–organic frameworks at interfaces in dye-sensitized solar cells[J]. ChemSusChem, 2014, 7(9): 2469−2472.

[13] Li W, Li J, Wang L, et al. Post modification of perovskite sensitized solar cells by aluminum oxide for enhanced performance [J]. Journal of Material Chemistry A, 2013, 1(38): 11735−11740.

[14] Li Y F, Che Z Z, Sun X, et al. Metal-organic frameworks derived hierarchical ZnO parallelepipeds as efficient scattering layer in dye-sensitized solar cells[J]. Chemical Communications, 2014, 50(68): 9769−9772.

[15] Park Y, Chang Y, Kum B, et al. Size-tunable mesoporous spherical TiO2 as a scattering overlayer in high-performance dye-sensitized solar cells[J]. Journal of Material Chemistry, 2011, 21(26): 9582−9586.

[16] Dou J, Li F, Xie F, et al. Metal−organic framework derived hierarchical porous anatase TiO2 as a photoanode for dye-sensitized solar cell[J]. Crystal Growth &Design, 2016, 16(1): 121−125.

文章导航

/