欢迎访问《电化学(中英文)》期刊官方网站,今天是
电化学储能应用及产业化近期研究专辑 (厦门大学 赵金保教授主编)

电化学储能基本问题综述

  • 李 泓 ,
  • 吕迎春
展开
  • 1. 中国科学院物理研究所,中国 北京 100190;2. 上海大学材料基因组工程研究院,中国 上海 200444

网络出版日期: 2015-10-28

基金资助

国家自然科学基金杰出青年基金项目(No. 51325206)

Short Review on Electrochemical Energy Storage

  • LI Hong ,
  • LYU Ying-chun
Expand
  • 1. Institute of physics, Chinese Academy of Science, Beijing 100190, China; 2. Materials Genome Institute, Shanghai University, Shanghai 200444, China

Online published: 2015-10-28

摘要

储能是能源、信息、交通、医疗、航空航天、先进制造、先进装备、国家安全等领域的关键支撑技术. 电化学储能技术应用广泛,不断发展. 本文小结了电化学储能技术中的储能原理、技术指标、技术成熟度. 从基础科学的角度,主要以锂离子电池为例,简述了电化学储能器件中非传统电化学问题,包括热力学、动力学、尺寸效应、非对称体系、非对称充放电反应路径、表面现象、混合离子输运、固态电池等. 最后,对未来的电化学储能技术的发展提出了个人的理解.

本文引用格式

李 泓 , 吕迎春 . 电化学储能基本问题综述[J]. 电化学, 2015 , 21(5) : 412 -424 . DOI: 10.13208/j.electrochem.150750

Abstract

Energy storage is a critical supporting technology in many fields such as energy, information, transportation, and healthcare, aerospace, advanced manufacture, advanced equipment, national security. Electrochemical energy storage technique has been widely applied and is developing continuously. In this article, the energy storage mechanism, technical indicators and technology ready level in electrochemical energy storage are summarized. Mainly based on lithium ion batteries, untraditional electrochemical issues in electrochemical energy storage devices are described from the perspective of fundamental science. These issues deal mainly with thermodynamics, kinetics, size effect, asymmetric system, asymmetric reaction path, surface phenomenon, hybrid ion transportation, and solid state battery. Finally, some suggestions concerning future developments in electrochemical energy storage technology are provided.

参考文献

[1] Nie Y X(聂玉昕). 《中国大百科全书》74卷(第二版)物理学 词条:能量[M]. Encyclopedia of China Publishing House(中国大百科全书出版社), 2009-07: 352-353. [2] Subhash C, Singhal K K. Han M F(韩敏芳), Jiang X F(蒋先锋)译. 高温固体氧化物燃料电池—原理、设计和应用[M]. Science Press(科学出版社), 2007. [3] Zhong K, Zhang B, Luo S, et al. Investigation on porous MnO microsphere anode for lithium, ion batteries[J]. Journal of Power Sources, 2011, 196(16): 6802-6808. [4] Lyu Y, Zhao N, Hu E, et al. Probing reversible multi-electron transfer and structure evolution of Li1.2Cr0.4Mn0.4O2 cathode material for Li-ion batteries in a voltage range of 1.0-4.8 V[J]. Chemistry of Materials, 2015, 27(15): 5238-5252. [5] Zu C X, Li H. Thermodynamic analysis on energy densities of batteries[J]. Energy & Environmental Science, 2011, 4(8): 2614-2624. [6] Cui Z, Guo X, Li H. Improved electrochemical properties of MnO thin film anodes by elevated deposition temperatures: Study of conversion reactions[J]. Electrochimica Acta, 2013, 89: 229-238. [7] Delmer O, Balaya P, Kienle L, et al. Enhanced potential of amorphous electrode materials: Case study of RuO2[J]. Advanced Materials, 2008, 20(3): 501-505. [8] Wu X Y, Jin S F, Zhang Z Z, et al. Unravelling the storage mechanism in organic carbonyl electrodes for sodium-ion batteries[J]. Science Advances, 2015, 1(8): e1500330. [9] Zheng H(郑浩), Gao J(高健), Wang S F(王少飞), et al. Fundamental scientific aspects of lithium batteries (VI)-Ionic transport in solids[J]. Energy Storage Science and Technology(储能科学与技术), 2013, 2(6): 620-635. [10] Cui Z H, Guo X X, Li H. Equilibrium voltage and overpotential variation of nonaqueous Li-O2 batteries using the galvanostatic intermittent titration technique[J]. Energy & Environmental Science, 2015, 8(1): 182-187. [11] Mueller-Neuhaus J R, Dunlap R A, Dahn J R. Understanding irreversible capacity in LixNi1-yFeyO2 cathode materials[J]. Journal of The Electrochemical Society, 2000, 147(10): 3598-3605. [12] Johnson C S, Kim J-S, Jeremy Kropf A, et al. The role of Li2MO2 structures (M = metal ion) in the electrochemistry of xLiMn0.5Ni0.5O2?(1-x)Li2TiO3 electrodes for lithium-ion batteries[J]. Electrochemistry Communications, 2002, 4(6): 492-498. [13] Wu X Y, Ma J, Ma Q D, et al. A spray drying approach for the synthesis of a Na2C6H2O4/CNT nanocomposite anode for sodium-ion batteries[J]. Journal of Materials Chemistry A, 2015, 3(25): 13193-13197. [14] Chen Z, Chen Q, Chen L, et al. Electrochemical behavior of nanostructured ε-VOPO4 over two redox plateaus[J]. Journal of The Electrochemical Society, 2013, 160(10): A1777-A1780. [15] Hu Y S, Kienle L, Guo Y G, et al. High lithium electroactivity of nanometer-sized rutile TiO2[J]. Advanced Materials, 2006, 18(11): 1421-1426. [16] Yu X, Pan H, Wan W, et al. A size-dependent sodium storage mechanism in Li4Ti5O12 investigated by a novel characterization technique combining in situ X-ray diffraction and chemical sodiation[J]. Nano Letters, 2013, 13(10): 4721-4727. [17] Wu N, Lyu Y C, Xiao R J, et al. A highly reversible, low-strain Mg-ion insertion anode material for rechargeable Mg-ion batteries[J]. NPG Asia Materials, 2014, 6: e120. [18] Wu N, Yang Z Z, Yao H R, et al. Improving the electrochemical performance of the Li4Ti5O12 electrode in a rechargeable magnesium battery by lithium-magnesium Co-intercalation[J]. Angewandte Chemie International Edition, 2015, 54(19): 5757-5761. [19] Liu N, Li H, Wang Z, et al. Origin of solid electrolyte interphase on nanosized LiCoO2[J]. Electrochemical and Solid-State Letters, 2006, 9(7): A328-A331. [20] Wang Z, Chen L. Solvent storage-induced structural degradation of LiCoO2 for lithium ion batteries[J]. Journal of Power Sources, 2005, 146(1/2): 254-258. [21] Goodenough J B, Kim Y. Challenges for rechargeable Li batteries[J]. Chemistry of Materials, 2010, 22(3): 587-603. [22] LI H(李泓). Fundamental scientific aspects of lithium ion batteries (XV) - Summary and outlook[J]. Energy Storage Science and Technology(储能科学与技术), 2015, 4(3): 306-318. [23] Li W J(李文俊), Chu G(褚赓), LI H(李泓), et al. Fundamental scientific aspects of lithium batteries (XII) - Characterization techniques[J]. Energy Storage Science and Technology(储能科学与技术), 2014, 3(6): 642-667. [24] Ma C(马璨), Lyu Y C(吕迎春), LI H(李泓). Fundamental scientific aspects of lithium batteries (VII) - Positive electrode materials[J]. Energy Storage Science and Technology(储能科学与技术), 2014, 3(1): 53-65. [25] Gao J(高健). Fundamental scientific aspects of lithium batteries (IV) - Phase transition and phase diagram(2)[J]. Energy Storage Science and Technology, 2013, 2(3): 250-266. [26] Gao J(高健), Lyu Y C(吕迎春), Li H(李泓). Fundamental scientific aspects of lithium batteries (III) - Phase transition and phase diagram[J]. Energy Storage Science and Technology, 2013, 2(3): 250-266. [27] Lu Z H, Beaulieu L Y, Donaberger R A, et al. Synthesis, structure, and electrochemical behavior of LiNixLi1/3-2x/3Mn2/3-x/3O2[J]. Journal of The Electrochemical Society, 2002, 149(6): A778-A791. [28] Kim J S, Johnson C S, Thackeray M M. Layered xLiMO2(1-x)Li2MO3 electrodes for lithium batteries: A study of 0.95LiMn0.5Ni0.5O2?0.05Li2TiO3[J]. Electrochemistry Communications, 2002, 4(3): 205-209.

文章导航

/