金纳米粒子/聚多巴胺/碳纳米管修饰玻碳电极对核黄素的测定
收稿日期: 2015-07-27
修回日期: 2015-09-03
网络出版日期: 2015-09-06
基金资助
国家863计划资助项目(2012AA022604);国家自然科学基金(21405015,21275028);福建省自然科学基金资助项目(2014J05092);福建省教育厅项目(JA13147);大学生创新创业训练计划项目基金(201410392030)
Fabrication of Riboflavin Electrochemical Sensor Based on Au Nanoparticles/Polydopamine/Carbon Nanotubes Modified Glassy Carbon Electrode
Received date: 2015-07-27
Revised date: 2015-09-03
Online published: 2015-09-06
采用原位还原法制备金纳米粒子/聚多巴胺/碳纳米管(Au-PDA-MWNTs)复合材料,并将其用于建立高灵敏检测核黄素的电化学方法.采用紫外–可见光谱、扫描电镜、x-射线能谱对Au-PDA-MWNTs复合材料进行表征,采用循环伏安法和差示脉冲伏安法探讨核黄素(RF)在Au-PDA-MWNTs修饰的玻碳电极上的电化学行为,并对RF含量进行测定.该方法对核黄素的检测在5×10-9 mol·L-1~1×10-5 mol·L-1的范围内呈良好的线性关系(R=0.9906),检测限为1.7×10-9 mol·L-1.本方法操作简便、抗干扰能力强,方法可行,因此该方法成功实现了维生素药片中RF含量的测定.
彭花萍 , 余美玲 , 刘馨 , 刘盼 , 陈伟 , 刘爱林 , 林新华* . 金纳米粒子/聚多巴胺/碳纳米管修饰玻碳电极对核黄素的测定[J]. 电化学, 2016 , 22(1) : 43 -48 . DOI: 10.13208/j.electrochem.150727
A novel electrochemical platform for the high sensitivity detection of riboflavin was constructed by Au nanoparticles/polydopamine/carbon nanotubes (Au-PDA-MWCNTs) nanocomposite modified glassy carbon electrode. The Au-PDA-MWCNTs nanocomposite was synthesized by in situ reduction method. The characteristics of the as-prepared Au-PDA-MWCNTs nanocomposite modified electrodes were investigated by using UV-Vis spectroscopy, scanning electron microscopy (SEM) and electrochemical methods. Cyclic voltammetry (CV) and differential pulse voltammetry (DPV) were used to study the electrochemical behavior of riboflavin (RF) at Au-PDA-MWCNTs nanocomposite modified electrodes. The results demonstrated that the present electrochemical sensor exhibited a wide linear range from 5×10-9 mol•L-1to 1×10-5 mol•L-1 for detection of riboflavin, with a detection limit of 1.7×10-9 mol•L-1 (S/N = 3). The present method for high sensitivity determination of riboflavin by electrochemical method at Au-PDA-MWCNTs nanocomposite modified electrodes is simple, accurate, reliable and feasible with an excellent anti-interference ability against electroactive species and metal ions. Accordingly, the present method proved to be useful for the estimation of the RF content in pharmaceutical samples with satisfactory recovery.
[1] Chatterjee A, Foord J S. Biological applications of diamond electrodes: electrochemical studies of riboflavin[J]. Diamond and Related Materials, 2009, 18(5-8): 899-903.
[2] Massey V. The chemical and biological versatility of riboflavin[J], Biochemical Society Transactions, 2000, 28(4): 283-296.
[3] Sikorska E, Gliszczynska-Swig?o A, Insinska-Rak M, et al. Simultaneous analysis of riboflavin and aromatic amino acids in beer using fluorescence and multivariate calibration methods[J]. Analytica Chimica Acta, 2008, 613(2): 207-217.
[4] Qi H L, Cao Z Z, Hou L N. Electrogenerated chemiluminesence method for the determination of riboflavin at an ionic liquid modified gold electrode[J]. Spectrochimica Acta Part A,2011, 78, (1): 211-215.
[5] Lavanya N, Radhakrishnan S, Sekar C, et al. Fabrication of Cr doped SnO2 nanoparticles based biosensor for the selective determination of riboflavin in pharmaceuticals[J]. Analyst, 2013, 138(7): 2061-2067.
[6] Sá é S, Silva P S , Jost C L, et al. Electrochemical sensor based on bismuth-film electrode for voltammetric studies on vitamin B2 (riboflavin)[J]. Sensors and Actuators B: Chemical, 2015, 209(1): 423-430.
[7] Wang Y, Zhuang Q F, Ni Y N. Fabrication of riboflavin electrochemical sensor based on homoadenine single-stranded DNA/molybdenum disulfide–graphene nanocomposite modified gold electrode[J]. Journal of Electroanalytical Chemistry, 2015, 736(1): 47-54.
[8] Zhang H, Zhao J S, Liu H T, et al. Application of poly (3-methylthiophene) modified glassy carbon electrode as riboflavin sensor[J]. International Journal of Electrochemical Science, 2010, 5: 295-301.
[9] Ahirwal G K, Mitra C K. Gold nanoparticles based sandwich electrochemical immunosensor[J]. Biosensors and Bioelectronics, 2010, 25(9): 2016-2020.
[10] Mani V, Dinesh B, Chen S M, et al. Direct electrochemistry of myoglobin at reduced graphene oxide-multiwalled carbon nanotubes-platinum nanoparticles nanocomposite and biosensing towards hydrogen peroxide and nitrite[J]. Biosensors and Bioelectronics, 2014, 53: 420-427.
[11] Lin L S, Cong Z X, Cao J B, et al. Fe3O4@polydopamine core-shell nanocomposites for intracellular mRNA detection and imaging-guided photothermal therapy[J]. ACS Nano, 2014, 8(4): 3876-3883.
[12] Loget G, Wood J B, Cho K, et al. Electrodeposition of polydopamine thin films for DNA patterning and microarrays[J]. Analytical Chemistry, 2013, 85(21): 9991-9995.
[13] Tsang S C, Chen Y K, Harris P J F, et al. A simple chemical method of opening and filling carbon nanotubes[J]. Nature, 1994, 372(6502): 159-162.
[14] Siebrands T, Giersig M, Mulvaney P, et al. Steric exclusion chromatography of nanometer-sized gold particles[J]. Langmuir, 1993, 9(9): 2297-2300.
[15] Zhang M, He X W, Chen L X, et al. Preparation of IDA-Cu functionalized core–satellite Fe3O4/polydopamine/Au magnetic nanocomposites and their application for depletion of abundant protein in bovine blood[J]. Journal of Materials Chemistry, 2010, 47(20): 10696-10704.
[16] Wang T, Hu X G, Qu X H, et al. Noncovalent functionalization of multiwalled carbon nanotubes: Application in hybrid Nanostructures[ J]. Journal of Physical Chemistry B, 2006, 110(13): 6613-6636.
/
〈 |
|
〉 |