欢迎访问《电化学(中英文)》期刊官方网站,今天是
研究论文

Pd-Sb/C复合纳米催化剂对甲酸电催化氧化的性能研究

  • 王龙龙 ,
  • 曹晓璐 ,
  • 王亚骏 ,
  • 平金豪 ,
  • 李巧霞
展开
  • 上海电力学院,上海高校电力腐蚀控制与应用电化学重点实验室,上海 200090

收稿日期: 2014-11-24

  修回日期: 2015-03-06

  网络出版日期: 2015-08-28

基金资助

国家自然科学基金项目(No. 21103107)、上海市科委重点项目(No. 10160502300)资助

Preparation and Characterization of Carbon Supported Pd-Sb Composite Nanocatalysts for Formic Acid Electrooxidation

  • WANG Long-Long ,
  • CAO Xiao-Lu ,
  • WANG Ya-Jun ,
  • PING Jin-Hao ,
  • LI Qiao-Xia
Expand
  • Key Laboratory of Shanghai Colleges and Universities for Corrosion Control in Electric Power System and Applied Electrochemistry, Shanghai University of Electric Power, Shanghai 200090, China

Received date: 2014-11-24

  Revised date: 2015-03-06

  Online published: 2015-08-28

摘要

以柠檬酸三钠为稳定剂,硼氢化钠为还原剂,制备了碳载型的Pd-Sb复合纳米催化剂(Pd-Sb/C),通过调制不同Pd:Sb摩尔比研究了其对甲酸电催化性能的影响. TEM结果表明,合成的纳米颗粒粒径较小且均匀分散在碳载体表面. XRD和XPS测试表明,Pd-Sb/C中少量的单质态Sb(0)高度分散在Pd颗粒中或表面,形成合金化程度较低的PdSb合金. 电化学测试表明,当Pd:Sb = 20:1时,合成的催化剂对甲酸的催化效能最佳. 与合成的Pd/C和商业Pd/C相比,Pd-Sb/C(20:1)的电流密度分别是Pd/C的2.6倍、商业Pd/C的4.2倍. Pd-Sb/C的整体催化性能得到改善主要归因于适量的单质态Sb(0)引入到Pd中,诱导产生电子效应和“双功能”效应,一方面减小Pd与CO毒性物种之间的吸附作用,另一方面促使Pd表面吸附的CO快速氧化,提高了Pd-Sb/C催化剂的抗CO中毒能力,使得Pd-Sb/C催化剂的整体催化性能得到改善.

本文引用格式

王龙龙 , 曹晓璐 , 王亚骏 , 平金豪 , 李巧霞 . Pd-Sb/C复合纳米催化剂对甲酸电催化氧化的性能研究[J]. 电化学, 2015 , 21(4) : 368 -374 . DOI: 10.13208/j.electrochem.141124

Abstract

Palladium is considered as an efficient anode catalyst with high catalytic activity for electrooxidation of formic acid. To further improve the catalytic activity and stability, alloying or surface modification with Sb is an effective way. In this work, the well dispersed carbon supported Pd-Sb composite nanocatalysts (Pd-Sb/C) were synthesized by traditional impregnation reduction method with trisodium citrate as the complexing agent, sodium borohydride as the reducing agent. The morphologies of Pd-Sb/C and the effects of molar ratio of Pd to Sb on the electrocatalytic properties of Pd-Sb/C for HCOOH electrooxidation were studied. The XRD and XPS analyses on the as-prepared Pd-Sb/C catalyst revealed that Sb (0) was presented on the Pd surface, and the immature alloying of Pd with Sb was achieved. Cyclic voltammetryic and chronoamperometric studies indicated a volcano-shaped relationship between Sb content and electrocatalytic activity with an optimum molar ratio of Pd:Sb=20:1. Compared with the commercial Pd/C catalyst, the Pd-Sb/C (20:1) presented the highest electrocatalytic activity and best stability. This enhancement may be attributed to the electronic effect and bi-functional effect induced by addition of Sb onto Pd surface, resulting in a weaker adsorption and accelerated oxidative removal of CO poison formed during HCOOH electrooxidation.

参考文献

[1] Yu X W, Pickup P G. Recent advances in Direct Formic Acid Fuel Cells (DFAFC)[J]. Journal of Power Sources, 2008, 182(1): 124-132.
[2] Tammam R H, Saleh M M. Electrocatalytic oxidation of formic acid on nano/micro fibers of poly(p-anisdine) modified platinum electrode[J]. Journal of Power Sources, 2014, 246: 178-183.
[3] Bertin E, Garbarino S, Guay D, et al. Electrodeposited platinum thin films with preferential (100) orientation: Characterization and electrocatalytic properties for ammonia and formic acid oxidation[J]. Journal of Power Sources, 2013, 225: 323-329.
[4] El-Nagar G A, Mohammad A M, El-Deab M S, et al. Electrocatalysis by design: Enhanced electrooxidation of formic acid at platinum nanoparticles-nickel oxide nanoparticles binary catalysts[J]. Electrochimica Acta, 2013, 94: 62-71.
[5] Waszczuk P, Barnard T M, Rice C, et al. A nanoparticle catalyst with superior activity for electrooxidation of formic acid[J]. Electrochemistry Communications, 2002, 4(7): 599-603.
[6] Rice C, Ha S, Masel R I, et al. Catalysts for direct formic acid fuel cells[J]. Journal of Power Sources, 2003, 115(2): 229-235.
[7] Zhu Y, Kang Y Y, Zou Z Q, et al. A facile preparation of carbon-supported Pd nanoparticles for electrocatalytic oxidation of formic acid[J]. Electrochemistry Communications, 2008, 10(5): 802-805.
[8] Wang J Y, Kang Y Y, Yang H, et al. Boron-doped palladium nanoparticles on carbon black as a superior catalyst for formic acid electro-oxidation[J]. The Journal of Physical Chemistry C, 2009, 113(19): 8366-8372.
[9] Lu L, Li H Z, Hong Y J, et al. Improvement of electrocatalytic performance of carbon supported Pd anodic catalyst in direct formic acid fuel cell by ethylenediamine-tetramethylene phosphonic acid[J]. Journal of Power Sources, 2012, 210: 154-157.
[10] Ren M J, Chen J, Li Y, et al. Lattice contracted Pd-hollow nanocrystals: Synthesis, structure and electrocatalysis for formic acid oxidation[J]. Journal of Power Sources, 2014, 246: 32-38.
[11] Wang J Y, Zhang H X, Jiang K, et al. From HCOOH to CO at Pd electrodes: A surface-enhanced infrared spectroscopy study[J]. Journal of the American Chemical Society, 2011, 133(38): 14876-14879.
[12] Miyake H, Okada T, Osawa G S M. Formic acid electrooxidation on Pd in acidic solutions studied by surface enhanced infrared absorption spectroscopy[J]. Physical Chemistry Chemical Physics, 2008, 10(25): 3662-3669.
[13] Yu X W, Pickup P G. Mechanistic study of the deactivation of carbon supported Pd during formic acid oxidation[J]. Electrochemistry Communications, 2009, 11(10): 2012-2014.
[14] Lee J K, Jeon H, Uhm S, et al. Influence of underpotentially deposited Sb onto Pt anode surface on the performance of direct formic acid fuel cells[J]. Electrochimica Acta, 2008, 53(21): 6089-6092.
[15] Peng B, Wang J Y, Zhang H X, et al. A versatile electroless approach to controlled modification of Sb on Pt surfaces towards efficient electrocatalysis of formic acid[J]. Electrochemistry Communications, 2009, 11(4): 831-833.
[16] Haan J L, Stafford K M, Morgan R D, et al. Performance of the direct formic acid fuel cell with electrochemically modified palladium-antimony anode catalyst[J]. Electrochimica Acta, 2010, 55(7): 2477-2481.
[17] Yu X W, Pickup P G. Deactivation resistant PdSb/C catalysts for direct formic acid fuel cells[J]. Electrochemistry Communications, 2010, 12(6): 800-803.
[18] Zhou W J, Lee J Y. Particle size effects in Pd-catalyzed electrooxidation of formic acid[J]. The Journal of Physical Chemistry C, 2008, 112(10): 3789-3793.
[19] Hu S, Scudiero L, Ha S. Electronic effect on oxidation of formic acid on supported Pd-Cu bimetallic surface[J]. Electrochimica Acta, 2012, 83: 354-358.
[20] Shen S Y, Zhao T S, Xu J B, et al. Synthesis of PdNi catalysts for the oxidation of ethanol in alkaline direct ethanol fuel cells[J]. Journal of Power Sources, 2010, 195(4): 1001-1006.
[21] Zhang J T, Qiu C C, Ma H Y, et al. Facile fabrication and unexpected electrocatalytic activity of palladium thin films with hierarchical architectures[J]. The Journal of Physical Chemistry C, 2008, 112(36): 13970-13975.
文章导航

/