欢迎访问《电化学(中英文)》期刊官方网站,今天是
研究论文

采用AlCl3-Emic-MgCl2室温离子液体电沉积制备铝-镁合金

  • M. RostomAli ,
  • Andrew P. Abbott ,
  • Karl S. Ryder
展开
  • 1. 莱斯特大学化学系, 莱斯特 LE1 7RH, 英国; 2. 拉杰沙溪大学应用化学与化工系, 拉杰沙溪-6205, 孟加拉共和国

收稿日期: 2014-06-03

  修回日期: 2014-07-28

  网络出版日期: 2015-04-23

基金资助

The authors gratefully acknowledge the Commonwealth Scholarship Commission and British Council in the UK for financial support of this work.

Electrodeposition of Al-Mg Alloys from Acidic AlCl3-Emic-MgCl2 Room Temperature Ionic Liquids

  • M. RostomAli ,
  • Andrew P. Abbott ,
  • Karl S. Ryder
Expand
  • 1. Department of Chemistry, University of Leicester, Leicester LE1 7RH, UK; 2. Department of Applied Chemistry and Chemical Engineering, University of Rajshahi, Rajshahi-6205, Bangladesh

Received date: 2014-06-03

  Revised date: 2014-07-28

  Online published: 2015-04-23

Supported by

The authors gratefully acknowledge the Commonwealth Scholarship Commission and British Council in the UK for financial support of this work.

摘要

采用恒电流和恒电位技术,以及路易斯酸氯化铝(III)-1-乙基-3-甲基咪唑氯化物离子液体中添加氯化镁(II),室温下在铂和铜阴极表面电沉积制备了铝-镁合金. 合金层中镁的含量随离子液体中氯化镁浓度和所施加的阴极电流密度的增加而增加. 采用X-射线衍射谱(XRD)、扫描电子显微镜(SEM)和能量散射X-射线谱(EDAX)技术,研究了不同电沉积实验条件得到的电沉积层的晶体结构及表面形貌. 增加沉积电流密度,可以制备出致密、光亮和结合力良好的电沉积层. 铝-镁合金电沉积的阴极电流效率可达99%. 应用电化学石英晶体微天平(EQCM)技术研究了电沉积合金的组成. 根据重声阻抗分析得到的质量-电荷(m-Q)曲线斜率计算了金属共沉积层的化学成分.

本文引用格式

M. RostomAli , Andrew P. Abbott , Karl S. Ryder . 采用AlCl3-Emic-MgCl2室温离子液体电沉积制备铝-镁合金[J]. 电化学, 2015 , 21(2) : 172 -180 . DOI: 10.13208/j.electrochem.140603

Abstract

Electrodeposition of aluminium-magnesium alloys have been carried out onto platinum and copper cathodes from Lewis acidic aluminium(III) chloride-1-ethyl-3-methylimidazolium chloride ionic liquid containing magnesium(II) chloride by constant current and constant potential methods at room temperature. Magnesium content in the deposited alloy increases with increasing MgCl2 concentration in the ionic liquid and with increasing cathodic current density. The influences of various experimental conditions on electrodeposition and the morphology of the electrodeposited layers have been investigated by X-ray diffraction (XRD) and scanning electron microscopy (SEM) equipped with energy dispersive X-ray spectroscopy (EDAX). On increasing the deposition current densities the dense, bright, adherent and smooth electrodeposited layers are obtained. The cathodic current efficiency for the deposition of Al-Mg alloys is about 99%. The electrochemical quartz crystal microbalance (EQCM) has been used to study alloy deposition. The composition of the metal co-deposit has been calculated from the slopes of the mass-charge (m-Q) plots of gravimetric acoustic impedance analysis.

参考文献

[1] Makar G L, Kruger J. Corrosion studies of rapidly solidified magnesium alloys[J]. Journal of the Electrochemical Society, 1990, 137(2): 414-421.
[2] Song G, Atrens A, John D St, et al. The anodic dissolution of magnesium in chloride and sulphate solutions[J]. Corrosion Science, 1997, 39(10/11): 1981-2004.
[3] Ambat R, Aung N N, Zhou W. Evaluation of microstructural effects on corrosion behaviour of AZ91D magnesium alloy[J]. Corrosion Science, 2000, 42(8): 1433-1455.
[4] Kautek W, Birkle S. Aluminum-electrocrystallization from metal-organic electrolytes[J]. Electrochimica Acta, 1989, 34(8): 1213-1218.
[5] Zhao Y, Vander Noot T J. Electrodeposition of aluminum from room temperature AlCl3-TMPAC molten salts[J]. Electrochimica Acta, 1997, 42(11): 1639-1643.
[6] Melton T J, Joyce J, Maloy J T, et al. Electrochemical studies of sodium chloride as a lewis buffer for room temperature chloroaluminate molten salts[J]. Journal of the Electrochemical Society, 1990, 137(12): 3865-3869.
[7] Carlin R T, Osteryoung R A. Aluminum anodization in a basic ambient temperature molten salt[J]. Journal of the Electrochemical Society, 1989, 136(5): 1409-1415.
[8] Moffat T P. Electrodeposition of Ni1-xAlx in a chloroaluminate melt[J]. Journal of the Electrochemical Society, 1994, 141(11): 3059-3070.
[9] Ali M R, Nishikata A, Tsuru T. Electrodeposition of Co-Al alloys of different composition from the AlCl3-BPC-CoCl2 room temperature molten salt[J]. Electrochimica Acta, 1997, 42(12): 18191828.
[10] Ali M R, Nishikata A, Tsuru T. Electrodeposition of aluminum-chromium alloys from AlCl3-BPC melt and its corrosion and high temperature oxidation behaviors[J]. Electrochimica Acta, 1997, 42(15): 2347-2354.
[11] Ali M R, Nishikata A, Tsuru T. Electrodeposition of Al-Ni intermetallic compounds from aluminum chloride-N-(n-butyl)pyridinium chloride room temperature molten salt[J]. Journal of Electroanalytical Chemistry, 2001, 513(2): 111-118.
[12] Ali M R, Nishikata A, Tsuru T. Electrodeposition of Al-Ti alloys from aluminum chloride-N-(n-butyl)pyridinium chloride room temperature molten salt[J]. Indian Journal of Chemical Technology, 2003, 10(1): 14-20.
[13] Stafford G R. The electrodeposition of Al3Ti from chloroaluminate electrolytes[J]. Journal of the Electrochemical Society, 1994, 114(4): 945-953.
[14] Tsuda T, Hussay C L, Stafford G R. Eectrodeposition of Al-Mo alloys from the lewis acidic aluminum chloride-1-ethyl-3-methylimidazolium chloride molten salt[J]. Journal of the Electrochemical Society, 2004, 151(6): C379-C384.
[15] Stafford G R. The electrodeposition of an aluminum-manganese metallic glass from molten salts[J]. Journal of the Electrochemical Society, 1989, 136(3): 635-639.
[16] Endres F, Bukowsk M, Hempelmann R, Natter H. Electrodeposition of nanocrystalline metals and alloys from ionic liquids[J]. Angewandte Chemie International Edition, 2003, 42(29): 3428-3430.
[17] Tsuda T, Hussay C L, Stafford G R, et al. Electrodeposition of Al-Zr alloys from lewis acidic aluminum chloride-1-ethyl-3-methylimidazolium chloride melt[J]. Journal of the Electrochemical Society, 2004, 151(7): C447-C454.
[18] Lai P K, Kazacos M S. Electrodeposition of aluminium in aluminium chloride/1-methyl-3-ethylimidazolium chloride[J]. Journal of Electroanalytical Chemistry, 1988, 248(2): 431-440.
[19] Hussey C L, Laher T M. Elcetrochemical and spectroscopic studies of cobalt(II) in molten aluminum chloride-N-n-butylpyridinium chloride[J]. Inorganic Chemistry, 1981, 20: 4201-4206.
[20] Hussey C L. Room temperature haloaluminate ionic liquids. Novel solvents for transition metal solution chemistry[J]. Pure & Applied Chemistry, 1988, 60(12): 1763-1772.
[21] Abdul-sada A L, Greenway A M, Seddon K R, et al. Fast atom bombardment mass spectrometric evdence for the formation of tris{tetrachloroaluminate(III)}metallate(II) anions, [M(AICI4)3]-, in acidic ambient-temperature ionic liquids[J]. Organic Mass Spectrometry, 1992, 27(5): 648-649.
[22] Morimitsu M, Tanaka N, Matsunaga M. Induced codeposition of Al-Mg alloys in lewis acidic AlCl3-EMIC room temperature molten salts[J]. Chemistry Letters, 2000, 29(9): 1028-1029.
[23] Pitner W R, Hussey C L, Stafford G R. Electrodeposition of nickel-aluminum alloys from the aluminum chloride-1-methyl-3-ethylimidazolium chloride room temperature molten salt[J]. Journal of the Electrochemical Society, 1996, 143(1): 130-138.
[24] Abbott A P, Qiu F, Abood H M A, et al. Double layer, diluents and anode effects upon the electrodeposition of aluminium from chloroaluminate based ionic liquids[J]. Physical Chemistry Chemical Physics, 2010, 12(8): 1862-1872.
[25] Barron J C. Zn and its alloy electrodeposition from deep eutectic solvents[D]. University of Leicester, UK, 2009.
文章导航

/