采用溶剂热法制备了碳纳米管穿插的分级结构五氧化二钒空心球(VOCx). 使用XRD、SEM、循环伏安曲线和充放电曲线研究了不同碳纳米管量对产物结构、形貌和电化学性能的影响. 结果表明,碳纳米管的加入明显改善了VOC的倍率特性. 碳纳米管含量为7.1%时,0.5 A·g-1电流密度下,其比电容达到346 F·g-1,8 A·g-1电流密度时,其电容保持率可达75%. 与活性炭组装成混合电容器,在功率密度为700 W·kg-1时,能量密度达12.6 Wh·kg-1.
The carbon nanotubes/vanadium oxides (CNTs/V2O5) hollow microspheres (VOC) were prepared via solvothermal process. The effects of the ratio for CNTs to V2O5 on the morphologies, structures and electrochemical performances were systemically investigated. The results indicate that CNTs dramatically enhanced the rate performances of VOC composite electrodes. When the ratio of CNTs is 7.1%, the VOC composite electrode exhibited the best electrochemical performance, which delivered a specific capacitance of 346 F·g-1 at 0.5 A·g-1 and maintained 75% at 8 A·g-1 in 5 mol L-1 LiNO3. A hybrid capacitor was assembly using commercial activated carbon as the negative electrode and VOC as the positive electrode. The hybrid capacitor exhibited an energy density of 12.6 Wh·kg-1 and power density of 700 W·kg-1.
[1] Conway B E, Birss V, Wojtowicz J. The role and utilization of pseudocapacitance for energy storage by supercapacitor[J]. Journal of Power Sources, 1997, 66(1/2): 1-14.
[2] Pell W G, Conway B E, Adams W A, et al. Electrochemical efficiency in multiple discharge/recharge cycling of supercapacitors in hybrid EV applications[J]. Journal of Power Sources, 1999, 80(1/2): 134-141.
[3] Conway B E. Electrochemical supercapacitors[M]. New York: Kluwer Academic/Plenum Publishers, 1999.
[4] Simon P, Gogotsi Y. Materials for electrochemical capacitors[J]. Natural Materials, 2008, 7(11): 845-854.
[5] Hall P J, Mirzaeian M, Fletcher S I, et al. Energy storage in electrochemical capacitors: designing functional materials to improve performance[J]. Energy & Environmental Science, 2010, 3(9): 1238-1251.
[6] Miller J R. Electrochemical capacitor thermal management issues at high-rate cycling[J]. Electrochimica Acta, 2006, 52(4): 1703-1708.
[7] Liu C, Li F, Ma L P, et al. Advanced materials for energy storage[J]. Advanced Materials, 2010, 22(8): E28-E62.
[8] Zheng J P, Cygan P J, Jow T R. Hydrous ruthenium oxide as an electrode material for electrochemical capacitors[J]. Journal the Electrochemical Society, 1995, 142(8): 2699-2703.
[9] Hu C C, Chang K H, Lin M C, et al. Design and tailoring of the nanotubular arrayed architecture of hydrous RuO2 for next generation supercapacitors[J]. Nano Letters, 2006, 6(12): 2690-2695.
[10] Yuan C Z, Chen L, Gao B, et al. Synthesis and utilization of RuO2·xH2O nanodots well dispersed on poly(sodium 4-styrene sulfonate) functionalized multi-walled carbon nanotubes for supercapacitors[J]. Journal of Materials Chemistry, 2008, 19(2): 246-252.
[11] Liu Y, Zhao W W, Zhang X G. Soft template synthesis of mesoporous Co3O4/RuO2·xH2O composites for electrochemical capacitors[J]. Electrochimica Acta, 2008, 53(8): 3296-3304.
[12] Liu K C, Anderson M A. Porous nickel oxide/nickel films for electrochemical capacitors[J]. Journal the Electrochemical Society, 1996, 143(1): 124-130.
[13] Yuan C Z, Zhang X G, Su L H, et al. Facile synthesis and self-assembly of hierarchical porous NiO nano/micro spherical superstructures for high performance supercapacitors[J]. Journal of Materials Chemistry, 2009, 19(32): 5772-5777.
[14] Lu Z Y, Zheng C, Liu J F, et al. Stable ultrahigh specific capacitance of NiO nanorod arrays[J]. Nano Research, 2011, 4(7): 658-665.
[15] Xia X H, Tu J P, Wang X L, et al. Mesoporous Co3O4 monolayer hollow-sphere array as electrochemical pseudocapacitor material[J]. Chemical Communications, 2011, 47(20): 5786-5788.
[16] Zhang F, Yuan C Z, Zhu J J, et al. Flexible films derived from electrospun carbon nanofibers incorporated with Co3O4 hollow nanoparticles as self-supported electrodes for electrochemical capacitors[J]. Advanced Functional Materials, 2013, 23(31): 3909-3915.
[17] Xu C L, Zhao Y Q, Yang G W, et al. Mesoporous nanowire array architecture of manganese dioxide for electrochemical capacitor applications[J]. Chemical Communications, 2009, 48: 7575-7577.
[18] Reddy A L M, Shaijumon M M, Gowda S R, et al. Multisegmented Au-MnO2/carbon nanotube hybrid coaxial arrays for high-power supercapacitor applications[J]. Journal of Physical Chemistry C, 2010, 114(1): 658-663.
[19] Cao Z Y, Wei B Q. V2O5/single-walled carbon nanotube hybrid mesoporous films as cathodes with high-rate capacities for rechargeable lithium ion batteries[J]. Nano Energy, 2013, 2(4): 481-490.
[20] Pan A Q, Wu H B, Zhang L, et al. Uniform V2O5 nanosheet-assembled hollow microflowers with excellent lithium storage properties[J]. Energy & Environmental Science, 2013, 6(5): 1476-1479.
[21] Su D W and Wang G X. Single-crystalline bilayered V2O5 nanobelts for high-capacity sodium-ion batteries[J]. ACS Nano, 2013, 7(12): 11218-11226.
[22] Raju V, Rains J, Gates C, et al. Superior cathode of sodium-ion batteries: orthorhombic V2O5 nanoparticles generated in nanoporous carbon by ambient hydrolysis deposition[J]. Nano Letters, 2014, 14(7): 4119-4124.
[23] Kuwabata S, Masui S, Tomiyori H, et al. Charge-discharge properties of chemically prepared composites of V2O5 and polypyrrole as positive electrode materials in rechargeable Li batteries[J]. Electrochimica Acta, 2000, 46(1): 91-97.
[24] Delmas C, Auradou H C, Cocciantelli J M, et al. The LixV2O5 system: An overview of the structure modifications induced by the lithium intercalation[J]. Solid State Ionics, 1994, 69(3/4): 257-64.