欢迎访问《电化学(中英文)》期刊官方网站,今天是
生物电分析化学近期研究专辑(南京大学 夏兴华教授主编)

细胞色素P450酶电化学生物传感器的构建及其药物代谢应用

  • 徐璇 ,
  • 卢菊生 ,
  • 刘松琴
展开
  • 东南大学化学化工学院,江苏 南京 211189

收稿日期: 2014-07-31

  修回日期: 2014-09-26

  网络出版日期: 2015-02-02

基金资助

国家自然科学基金项目(No. 21175021,No. 21375014)资助

Fabrication and Application of Cytochrome P450 Electrochemcial Biosensor in Drug Metabolism

  • XU Xuan ,
  • LU Ju-Sheng ,
  • LIU Song-Qin
Expand
  • School of Chemistry and Chemical Engineering, Southeast University, Nanjing 210096, China

Received date: 2014-07-31

  Revised date: 2014-09-26

  Online published: 2015-02-02

摘要

药物代谢过程是药物在体内产生药效和毒性的主要过程,发展廉价、方便、快速、高通量的体外药物代谢研究方法对新药的开发和设计、给药的方法和剂量、临床药物的检测等都有重要的指导意义. 细胞色素P450酶(CYP450酶)在药物的I相反应中起到关键作用,以电极代替辅酶NADPH提供CYP450酶催化反应过程中需要的两个电子,构建CYP450酶电化学生物传感器可实现药物的初步筛选. 大量研究表明,CYP450酶在电极表面合适的固定方法与电极材料可有效提高传感器的检测性能. 本文主要综述近年来CYP450酶电化学生物传感器的构建及其在药物代谢研究方面的应用,并展望其研发前景.

本文引用格式

徐璇 , 卢菊生 , 刘松琴 . 细胞色素P450酶电化学生物传感器的构建及其药物代谢应用[J]. 电化学, 2015 , 21(1) : 45 -52 . DOI: 10.13208/j.electrochem.140441

Abstract

The process of drug metabolism plays an important role in drug efficacy and toxicity in vivo. Thus, the development of cheap, continent, rapid and high-throughput method for drug metabolism studies has great guiding significance for the design of new drugs, the determination of drug dosage and the detection of clinical drugs. Since the key role played by Cytochrome P450 (CYP450) in phase-I drug reaction, the constructed CYP450 enzyme biosensor can be used for the initial screening of drugs. It is found that the replacement of coenzyme NADPH with an electrode is to provide two electrons demanded in the catalytic reaction. Furthermore, the assembly methods and electrode materials have a close relationship with the detection performance of the constructed CYP450 biosensors. In this review, the construction methods of CYP450 electrochemical biosensor and their applications in drug metabolism are summarized. Particularly, future study and prospect of development are envisioned.

参考文献

[1] Guengerich F P. Cytochrome P450 enzymes in the generation of commercial products[J]. Nature reviews-Drug discovery, 2002, 1(5): 359-366.
[2] Schneider E, Clark D S. Cytochrome P450 (CYP) enzymes and the development of CYP biosensors[J]. Biosensors & Bioelectronics, 2013, 39(1): 1-13.
[3] Bistolas N, Wollenberger U, Jung C, et al. Cytochrome P450 biosensors—a review[J]. Biosensors & Bioelectronics, 2005, 20(12): 2408-2423.
[4] Krishnan S, Schenkman J B, Rusling J F. Bioelectronic delivery of electrons to cytochrome P450 enzymes[J]. Journal of Physical Chemistry B, 2011, 115(26): 8371-8380.
[5] Estabrook R W, Faulkner K M, Seth M S, et al. Application of electrochemistry for P450-catalyzed reactions[J]. Method in Enzymology, 1996, 272: 44-51.
[6] Reipa V, Mayhew M P, Vilker V L. A direct electrode-driven P450 cycle for biocatalysis[J]. Proceedings of the National Academy of Sciences of the United States of America, 1997, 94(25): 13554-13558.
[7] Wirtz M, Klucik J, Rivera M. Ferredoxin-mediated electrocatalytic dehalogenation of haloalkanes by Cytochrome P450cam[J]. Journal of the American Chemical Society, 2000, 122(6): 1047-1056.
[8] Kazlauskaite J, Westlake A C G, Wong L, et al. Direct electrochemistry of cytochrome P450cam[J]. Chemical Communications, 1996, 18: 2189-2190.
[9] Lo K K, Wong L, Hill H A O. Surface-modified mutants of cytochrome CYP101 enzymatic properties and electrochemistry[J]. FEBS Letters, 1999, 451: 342-346.
[10] Fantuzzi A, Fairhead M, Gilardi G. Direct electrochemistry of immobilized human cytochrome P450 2E1[J]. Journal of the American Chemical Society, 2004, 126(16): 5040-5041.
[11] Decher G, Hong J D, Schmitt J. Buildup of ultrathin multilayer films by a self-assembly process: III. Consecutively alternating adsorption of anionic and cationic polyelectrolytes on charged surfaces[J]. Thin Solid Films, 1992, 210(2): 831-835.
[12] Lvov Y, Decher G, Moehwald H. Assembly, structural characterization, and thermal behavior of layer-by-layer deposited ultrathin films of poly(vinyl sulfate) and poly(allylamine)[J]. Langmuir, 1993, 9(2): 481-486.
[13] Ariga K, Kunitake T. Sequential catalysis in organized multienzyme films[M]//Ed. Lvov Y, M?hwald H. Protein architecture: Interfacing molecular assemblies and immobilization biotechnology. New York: Marcel Dekker, Inc., 2000: 169-192.
[14] Lvov Y M. Thin film nanofabrication by alternate adsorption of polyions, nanoparticles, and proteins[M]// Ed. Nalwa R W. Handbook of surfaces and interfaces of materials (Vol. 3). Nanostructured materials, micelles and colloids. San Diego, CA: Academic Press, 2001: 169-188.
[15] Zhou L P, Yang J, Estavillo C, et al. Toxicity screening by electrochemical detection of DNA damage by metabolites generated in situ in ultrathin DNA-enzyme films[J]. Journal of the American Chemical Society, 2003, 125(5): 1431-1436.
[16] Lvov Y M, Lu Z Q, Schenkman J B, et al. Direct electrochemistry of myoglobin and cytochrome P450cam in alternate layer-by-layer films with DNA and other polyions[J]. Journal of the American Chemical Society, 1998, 120(17): 4073-4080
[17] Munge B, Estavillo C, Schenkman J B, et al. Optimization of electrochemical and peroxide-driven oxidation of styrene with ultrathin polyion films containing cytochrome P450cam and myoglobin[J]. ChemBioChem: A European Journal of Chemical Biology, 2003, 4(1): 82-89.
[18] Sultana N, Schenkman J B, Rusling J F. Protein film electrochemistry of microsomes genetically enriched in human cytochrome P450 monooxygenases[J]. Journal of the American Chemical Society, 2005, 127(29): 13460-13461.
[19] Krishnan S, Wasalathanthri D, Zhao L L, et al. Efficient bioelectronic actuation of the natural catalytic pathway of human metabolic cytochrome P450s[J]. Journal of the American Chemical Society, 2011, 133(5): 1459-1465
[20] Huang M H, Xu X, Yang H, et al. Electrochemically-driven and dynamic enhancement of drug metabolism via cytochrome P450 microsomes on colloidal gold/graphene nanocomposites[J]. RSC Advances, 2012, 2(33): 12844-12850.
[21] Sugihara N. Immobilization of cytochrome P450 and electrochemical control of its activity[J]. Polymers for Advanced Technologies, 1998, 9(5): 307-313.
[22] Alonso-Lomilloa M A, Gonzalo-Ruizb J, Domínguez-Renedoa O, et al. CYP450 biosensors based on gold chips for antiepileptic drugs determination[J]. Biosensors & Bioelectronics, 2008, 23(11): 1733-1737.
[23] Dai C, Ding Y, Li M, et al. Direct electrochemistry of cytochrome P450 in a biocompatible film composed of an epoxy polymer and acetylene black[J]. Microchimica Acta, 2012, 176(3/4): 397-404.
[24] Liu S Q, Peng L, Yang X D, et al. Electrochemistry of cytochrome P450 enzyme on nanoparticle-containing membrane-coated electrode and its applications for drug sensing[J]. Analytical Biochemistry, 2008, 375(2): 209-216.
[25] Xu X. Wei W. Huang M H, et al. Electrochemically driven drug metabolism via cytochrome P450 2C9 reductase and indium tin oxide nanoparticle composite[J]. Chemical Communications, 2012, 48(63): 7802-7804.
[26] Sadeghi S J, Fantuzzi A, Gilardi G. Breakthrough in P450 bioelectrochemistry and future perspectives[J]. Biochimica et Biophysica Acta, 2011, 1814(1): 237-24.
[27] Panicco P, Dodhia V R, Fantuzzi A, et al. Enzyme-based amperometric platform to determine the polymorphic response in drug metabolism by cytochromes P450[J]. Analytical Chemistry, 2011, 83(6): 2179-2186.
[28] Fantuzzi A, Fairhead M, Gilardi G. Direct electrochemistry of immobilized human cytochrome P450 2E1[J]. Journal of the American Chemical Society, 2004, 126(16): 5040-5041.
[29] Fantuzzi A, Capria E, Mak L H, et al. An electrochemical microfluidic platform for human P450 drug metabolism profiling[J]. Analytical Chemistry, 2010, 82(24): 10222-10227.
[30] Fantuzzi A, Mak L H, Capria E, et al. A New standardized electrochemical array for drug metabolic profiling with human Cytochromes P450[J]. Analytical Chemistry, 2011, 83(10): 3831-3839.
[31] Tanne J, Schafer D, Khalid W, et al. Light-controlled bioelectrochemical sensor based on CdSe/ZnS quantum dots[J]. Analytical Chemistry, 2011, 83(20): 7778-7785.
[32] Zhao W W, Ma Z Y, Yu P P, et al. Highly sensitive photoelectrochemical immunoassay with enhanced amplification using horseradish peroxidase induced biocatalytic precipitation on a CdS quantum dots multilayer electrode[J]. Analytical Chemistry, 2012, 84(2): 917-923.
[33] Gill R, Zayats M, Willner I. Semiconductor quantum dots for bioanalysis[J]. Angewandte Chemie International Edition, 2008, 47(40): 7602-7625.
[34] Onoda A, Himiyama T, Ohkubo K, et al. Photochemical properties of a myoglobin-CdTe quantum dot conjugate[J]. Chemical Communications, 2012, 48(65): 8054-8056.
[35] Stoll C, Kudera S, Parak W J, et al. Quantum dots on gold: Electrodes for photoswitchable cytochrome c electrochemistry[J]. Small, 2006, 2(6): 741-743l.
[36] Katz E, Zayats M, Willner I, et al. Controlling the direction of photocurrents by means of CdS nanoparticles and cytochromec-mediated biocatalytic cascades[J]. Chemical Communications, 2006, 13: 1395-1397.
[37] Xu X, Qian J, Yu J C, et al. Cytochrome P450 enzyme functionalized-quantum dot as photocatalysts for drug metabolism[J]. Chemical Communications, 2014, 50(57): 7607-7610.
文章导航

/